Abstract:We present a new wrapper feature selection algorithm for human detection. This algorithm is a hybrid feature selection approach combining the benefits of filter and wrapper methods. It allows the selection of an optimal feature vector that well represents the shapes of the subjects in the images. In detail, the proposed feature selection algorithm adopts the k-fold subsampling and sequential backward elimination approach, while the standard linear support vector machine (SVM) is used as the classifier for human detection. We apply the proposed algorithm to the publicly accessible INRIA and ETH pedestrian full image datasets with the PASCAL VOC evaluation criteria. Compared to other state of the arts algorithms, our feature selection based approach can improve the detection speed of the SVM classifier by over 50% with up to 2% better detection accuracy. Our algorithm also outperforms the equivalent systems introduced in the deformable part model approach with around 9% improvement in the detection accuracy.
Abstract:We consider the hard label based black box adversarial attack setting which solely observes predicted classes from the target model. Most of the attack methods in this setting suffer from impractical number of queries required to achieve a successful attack. One approach to tackle this drawback is utilising the adversarial transferability between white box surrogate models and black box target model. However, the majority of the methods adopting this approach are soft label based to take the full advantage of zeroth order optimisation. Unlike mainstream methods, we propose a new practical setting of hard label based attack with an optimisation process guided by a pretrained surrogate model. Experiments show the proposed method significantly improves the query efficiency of the hard label based black-box attack across various target model architectures. We find the proposed method achieves approximately 5 times higher attack success rate compared to the benchmarks, especially at the small query budgets as 100 and 250.