Abstract:Online Test-Time Adaptation (OTTA) enhances model robustness by updating pre-trained models with unlabeled data during testing. In healthcare, OTTA is vital for real-time tasks like predicting blood pressure from biosignals, which demand continuous adaptation. We introduce a new test-time scenario with streams of unlabeled samples and occasional labeled samples. Our framework combines supervised and self-supervised learning, employing a dual-queue buffer and weighted batch sampling to balance data types. Experiments show improved accuracy and adaptability under real-world conditions.