Abstract:The notion of synthetic molecular communication (MC) refers to the transmission of information via molecules and is largely foreseen for use within the human body, where traditional electromagnetic wave (EM)-based communication is impractical. MC is anticipated to enable innovative medical applications, such as early-stage tumor detection, targeted drug delivery, and holistic approaches like the Internet of Bio-Nano Things (IoBNT). Many of these applications involve parts of the human cardiovascular system (CVS), here referred to as networks, posing challenges for MC due to their complex, highly branched vessel structures. To gain a better understanding of how the topology of such branched vessel networks affects the reception of a molecular signal at a target location, e.g., the network outlet, we present a generic analytical end-to-end model that characterizes molecule propagation and reception in linear branched vessel networks (LBVNs). We specialize this generic model to any MC system employing superparamagnetic iron-oxide nanoparticles (SPIONs) as signaling molecules and a planar coil as receiver (RX). By considering components that have been previously established in testbeds, we effectively isolate the impact of the network topology and validate our theoretical model with testbed data. Additionally, we propose two metrics, namely the molecule delay and the multi-path spread, that relate the LBVN topology to the molecule dispersion induced by the network, thereby linking the network structure to the signal-to-noise ratio (SNR) at the target location. This allows the characterization of the SNR at any point in the network solely based on the network topology. Consequently, our framework can, e.g., be exploited for optimal sensor placement in the CVS or identification of suitable testbed topologies for given SNR requirements.
Abstract:Molecular communication is a novel approach for data transmission between miniaturized devices, especially in contexts where electrical signals are to be avoided. The communication is based on sending molecules (or other particles) at nano scale through channel instead sending electrons over a wire. Molecular communication devices have a large potential in medical applications as they offer an alternative to antenna-based transmission systems that may not be applicable due to size, temperature, or radiation constraints. The communication is achieved by transforming a digital signal into concentrations of molecules. These molecules are then detected at the other end of the communication channel and transformed back into a digital signal. Accurately modeling the transmission channel is often not possible which may be due to a lack of data or time-varying parameters of the channel (e. g., the movements of a person wearing a medical device). This makes demodulation of the signal very difficult. Many approaches for demodulation have been discussed with one particular approach having tremendous success: artificial neural networks. These networks imitate the decision process in the human brain and are capable of reliably classifying noisy input data. Training such a network relies on a large set of training data. As molecular communication as a technology is still in its early development phase, this data is not always readily available. We discuss neural network-based demodulation approaches relying on synthetic data based on theoretical channel models as well as works using actual measurements produced by a prototype test bed. In this work, we give a general overview over the field molecular communication, discuss the challenges in the demodulations process of transmitted signals, and present approaches to these challenges that are based on artificial neural networks.