Abstract:This work explores the deployment of active reconfigurable intelligent surfaces (A-RIS) in integrated terrestrial and non-terrestrial networks (TN-NTN) while utilizing coordinated multipoint non-orthogonal multiple access (CoMP-NOMA). Our system model incorporates a UAV-assisted RIS in coordination with a terrestrial RIS which aims for signal enhancement. We aim to maximize the sum rate for all users in the network using a custom hybrid proximal policy optimization (H-PPO) algorithm by optimizing the UAV trajectory, base station (BS) power allocation factors, active RIS amplification factor, and phase shift matrix. We integrate edge users into NOMA pairs to achieve diversity gain, further enhancing the overall experience for edge users. Exhaustive comparisons are made with passive RIS-assisted networks to demonstrate the superior efficacy of active RIS in terms of energy efficiency, outage probability, and network sum rate.
Abstract:A potential candidate technology for the development of future 6G networks has been recognized as Reconfigurable Intelligent Surface (RIS). However, due to the variation in radio link quality, traditional passive RISs only accomplish a minimal signal gain in situations with strong direct links between user equipment (UE) and base station (BS). In order to get over this fundamental restriction of smaller gain, the idea of active RISs might be a suitable solution. In contrast to current passive RIS, which simply reflects and directs signals without any additional amplification, active RISs have the ability to enhance reflected signals by the incorporation of amplifiers inside its elements. However, with additional amplifiers, apart from the relatively complex attributes of RIS-assisted arrangements, the additional energy consumption of such technologies is often disregarded. So, there might be a tradeoff between the additional energy consumption for the RIS technologies and the overall gain acquired by deploying this potential advancement. The objective of this work is to provide a primary idea of a three-layer hybrid RIS-assisted configuration that is responsive to both active and passive RIS, as well as an additional dormant or inactive state. The single RIS structure should be capable of adjusting its overall configuration in response to fluctuations in transmit power and radio link quality. Furthermore, our fabricated passive RIS-assisted structure verifies a portion of the proposed idea, with simulations highlighting its advantages over standalone passive or active RIS-assisted technologies.
Abstract:The optimization of network performance is vital for the delivery of services using standard cellular technologies for mobile communications. Call setup delay and User Equipment (UE) battery savings significantly influence network performance. Improving these factors is vital for ensuring optimal service delivery. In comparison to traditional circuit-switched voice calls, VoLTE (Voice over LTE) technology offers faster call setup durations and better battery-saving performance. To validate these claims, a drive test was carried out using the XCAL drive test tool to collect real-time network parameter details in VoLTE and non-VoLTE voice calls. The findings highlight the analysis of real-time network characteristics, such as the call setup delay calculation, battery-saving performance, and DRX mechanism. The study contributes to the understanding of network optimization strategies and provides insights for enhancing the quality of service (QoS) in mobile communication networks. Examining VoLTE and non-VoLTE operations, this research highlights the substantial energy savings obtained by VoLTE. Specifically, VoLTE saves approximately 60.76% of energy before the Service Request and approximately 38.97% of energy after the Service Request. Moreover, VoLTE to VoLTE calls have a 72.6% faster call setup delay than non-VoLTE-based LTE to LTE calls, because of fewer signaling messages required. Furthermore, as compared to non-VoLTE to non-VoLTE calls, VoLTE to non-VoLTE calls offer an 18.6% faster call setup delay. These results showcase the performance advantages of VoLTE and reinforce its potential for offering better services in wireless communication networks.