Abstract:In this paper, we apply a multiple instance learning paradigm to signal-based risk stratification for cardiovascular outcomes. In contrast to methods that require hand-crafted features or domain knowledge, our method learns a representation with state-of-the-art predictive power from the raw ECG signal. We accomplish this by leveraging the multiple instance learning framework. This framework is particularly valuable to learning from biometric signals, where patient-level labels are available but signal segments are rarely annotated. We make two contributions in this paper: 1) reframing risk stratification for cardiovascular death (CVD) as a multiple instance learning problem, and 2) using this framework to design a new risk score, for which patients in the highest quartile are 15.9 times more likely to die of CVD within 90 days of hospital admission for an acute coronary syndrome.