Abstract:Hybrid quantum-classical computing relies heavily on Variational Quantum Algorithms (VQAs) to tackle challenges in diverse fields like quantum chemistry and machine learning. However, VQAs face a critical limitation: the balance between circuit trainability and expressibility. Trainability, the ease of optimizing circuit parameters for problem-solving, is often hampered by the Barren Plateau, where gradients vanish and hinder optimization. On the other hand, increasing expressibility, the ability to represent a wide range of quantum states, often necessitates deeper circuits with more parameters, which in turn exacerbates trainability issues. In this work, we investigate selective gate activation strategies as a potential solution to these challenges within the context of Variational Quantum Eigensolvers (VQEs). We evaluate three different approaches: activating gates randomly without considering their type or parameter magnitude, activating gates randomly but limited to a single gate type, and activating gates based on the magnitude of their parameter values. Experiment results reveal that the Magnitude-based strategy surpasses other methods, achieving improved convergence.
Abstract:Positive thinking is thought to be an important component of self-motivation in various practical fields such as education and the workplace. Previous work, including sentiment transfer and positive reframing, has focused on the positive side of language. However, self-motivation that drives people to reach their goals has not yet been studied from a computational perspective. Moreover, negative feedback has not yet been explored, even though positive and negative feedback are both necessary to grow self-motivation. To facilitate self-motivation, we propose CArrot and STICk (CASTIC) dataset, consisting of 12,590 sentences with 5 different strategies for enhancing self-motivation. Our data and code are publicly available at here.