Abstract:This paper considers a single-trajectory system identification problem for linear systems under general nonlinear and/or time-varying policies with i.i.d. random excitation noises. The problem is motivated by safe learning-based control for constrained linear systems, where the safe policies during the learning process are usually nonlinear and time-varying for satisfying the state and input constraints. In this paper, we provide a non-asymptotic error bound for least square estimation when the data trajectory is generated by any nonlinear and/or time-varying policies as long as the generated state and action trajectories are bounded. This significantly generalizes the existing non-asymptotic guarantees for linear system identification, which usually consider i.i.d. random inputs or linear policies. Interestingly, our error bound is consistent with that for linear policies with respect to the dependence on the trajectory length, system dimensions, and excitation levels. Lastly, we demonstrate the applications of our results by safe learning with robust model predictive control and provide numerical analysis.
Abstract:We study the adaptive control of an unknown linear system with a quadratic cost function subject to safety constraints on both the states and actions. The challenges of this problem arise from the tension among safety, exploration, performance, and computation. To address these challenges, we propose a polynomial-time algorithm that guarantees feasibility and constraint satisfaction with high probability under proper conditions. Our algorithm is implemented on a single trajectory and does not require system restarts. Further, we analyze the regret of our learning algorithm compared to the optimal safe linear controller with known model information. The proposed algorithm can achieve a $\tilde O(T^{2/3})$ regret, where $T$ is the number of stages and $\tilde O(\cdot)$ absorbs some logarithmic terms of $T$.