Abstract:The ROC curve is the major tool for assessing not only the performance but also the fairness properties of a similarity scoring function in Face Recognition. In order to draw reliable conclusions based on empirical ROC analysis, evaluating accurately the uncertainty related to statistical versions of the ROC curves of interest is necessary. For this purpose, we explain in this paper that, because the True/False Acceptance Rates are of the form of U-statistics in the case of similarity scoring, the naive bootstrap approach is not valid here and that a dedicated recentering technique must be used instead. This is illustrated on real data of face images, when applied to several ROC-based metrics such as popular fairness metrics.
Abstract:In spite of the high performance and reliability of deep learning algorithms in a wide range of everyday applications, many investigations tend to show that a lot of models exhibit biases, discriminating against specific subgroups of the population (e.g. gender, ethnicity). This urges the practitioner to develop fair systems with a uniform/comparable performance across sensitive groups. In this work, we investigate the gender bias of deep Face Recognition networks. In order to measure this bias, we introduce two new metrics, $\mathrm{BFAR}$ and $\mathrm{BFRR}$, that better reflect the inherent deployment needs of Face Recognition systems. Motivated by geometric considerations, we mitigate gender bias through a new post-processing methodology which transforms the deep embeddings of a pre-trained model to give more representation power to discriminated subgroups. It consists in training a shallow neural network by minimizing a Fair von Mises-Fisher loss whose hyperparameters account for the intra-class variance of each gender. Interestingly, we empirically observe that these hyperparameters are correlated with our fairness metrics. In fact, extensive numerical experiments on a variety of datasets show that a careful selection significantly reduces gender bias.