Abstract:We introduce a scattering covariance matrix which provides non-Gaussian models of time-series having stationary increments. A complex wavelet transform computes signal variations at each scale. Dependencies across scales are captured by the joint covariance across time and scales of complex wavelet coefficients and their modulus. This covariance is nearly diagonalized by a second wavelet transform, which defines the scattering covariance. We show that this set of moments characterizes a wide range of non-Gaussian properties of multi-scale processes. This is analyzed for a variety of processes, including fractional Brownian motions, Poisson, multifractal random walks and Hawkes processes. We prove that self-similar processes have a scattering covariance matrix which is scale invariant. This property can be estimated numerically and defines a class of wide-sense self-similar processes. We build maximum entropy models conditioned by scattering covariance coefficients, and generate new time-series with a microcanonical sampling algorithm. Applications are shown for highly non-Gaussian financial and turbulence time-series.
Abstract:Finding a good compromise between the exploitation of known resources and the exploration of unknown, but potentially more profitable choices, is a general problem, which arises in many different scientific disciplines. We propose a stylized model for these exploration-exploitation situations, including population or economic growth, portfolio optimisation, evolutionary dynamics, or the problem of optimal pinning of vortices or dislocations in disordered materials. We find the exact growth rate of this model for tree-like geometries and prove the existence of an optimal migration rate in this case. Numerical simulations in the one-dimensional case confirm the generic existence of an optimum.