Abstract:In coherent imaging systems, speckle is a signal-dependent noise that visually strongly degrades images' appearance. A huge amount of SAR data has been acquired from different sensors with different wavelengths, resolutions, incidences and polarizations. We extend the nonlocal filtering strategy to the temporal domain and propose a patch-based adaptive temporal filter (PATF) to take advantage of well-registered multi-temporal SAR images. A patch-based generalised likelihood ratio test is processed to suppress the changed object effects on the multitemporal denoising results. Then, the similarities are transformed into corresponding weights with an exponential function. The denoised value is calculated with a temporal weighted average. Spatial adaptive denoising methods can improve the patch-based weighted temporal average image when the time series is limited. The spatial adaptive denoising step is optional when the time series is large enough. Without reference image, we propose using a patch-based auto-covariance residual evaluation method to examine the ratio image between the noisy and denoised images and look for possible remaining structural contents. It can process automatically and does not rely on a supervised selection of homogeneous regions. It also provides a global score for the whole image. Numerous results demonstrate the effectiveness of the proposed time series denoising method and the usefulness of the residual evaluation method.
Abstract:Understanding the state of changed areas requires that precise information be given about the changes. Thus, detecting different kinds of changes is important for land surface monitoring. SAR sensors are ideal to fulfil this task, because of their all-time and all-weather capabilities, with good accuracy of the acquisition geometry and without effects of atmospheric constituents for amplitude data. In this study, we propose a simplified generalized likelihood ratio ($S_{GLR}$) method assuming that corresponding temporal pixels have the same equivalent number of looks (ENL). Thanks to the denoised data provided by a ratio-based multitemporal SAR image denoising method (RABASAR), we successfully applied this similarity test approach to compute the change areas. A new change magnitude index method and an improved spectral clustering-based change classification method are also developed. In addition, we apply the simplified generalized likelihood ratio to detect the maximum change magnitude time, and the change starting and ending times. Then, we propose to use an adaptation of the REACTIV method to visualize the detection results vividly. The effectiveness of the proposed methods is demonstrated through the processing of simulated and SAR images, and the comparison with classical techniques. In particular, numerical experiments proved that the developed method has good performances in detecting farmland area changes, building area changes, harbour area changes and flooding area changes.