Abstract:The success of machine learning algorithms heavily relies on the quality of samples and the accuracy of their corresponding labels. However, building and maintaining large, high-quality datasets is an enormous task. This is especially true for biomedical data and for meta-sets that are compiled from smaller ones, as variations in image quality, labeling, reports, and archiving can lead to errors, inconsistencies, and repeated samples. Here, we show that the uniform manifold approximation and projection (UMAP) algorithm can find these anomalies essentially by forming independent clusters that are distinct from the main (good) data but similar to other points with the same error type. As a representative example, we apply UMAP to discover outliers in the publicly available ChestX-ray14, CheXpert, and MURA datasets. While the results are archival and retrospective and focus on radiological images, the graph-based methods work for any data type and will prove equally beneficial for curation at the time of dataset creation.
Abstract:In this paper, we introduce a neighbor embedding framework for manifold alignment. We demonstrate the efficacy of the framework using a manifold-aligned version of the uniform manifold approximation and projection algorithm. We show that our algorithm can learn an aligned manifold that is visually competitive to embedding of the whole dataset.
Abstract:Recovering a signal from its Fourier intensity underlies many important applications, including lensless imaging and imaging through scattering media. Conventional algorithms for retrieving the phase suffer when noise is present but display global convergence when given clean data. Neural networks have been used to improve algorithm robustness, but efforts to date are sensitive to initial conditions and give inconsistent performance. Here, we combine iterative methods from phase retrieval with image statistics from deep denoisers, via regularization-by-denoising. The resulting methods inherit the advantages of each approach and outperform other noise-robust phase retrieval algorithms. Our work paves the way for hybrid imaging methods that integrate machine-learned constraints in conventional algorithms.