Abstract:Deep neural networks (DNNs) have heavily relied on traditional computational units like CPUs and GPUs. However, this conventional approach brings significant computational burdens, latency issues, and high power consumption, limiting their effectiveness. This has sparked the need for lightweight networks like ExtremeC3Net. On the other hand, there have been notable advancements in optical computational units, particularly with metamaterials, offering the exciting prospect of energy-efficient neural networks operating at the speed of light. Yet, the digital design of metamaterial neural networks (MNNs) faces challenges such as precision, noise, and bandwidth, limiting their application to intuitive tasks and low-resolution images. In this paper, we propose a large kernel lightweight segmentation model, ExtremeMETA. Based on the ExtremeC3Net, the ExtremeMETA maximizes the ability of the first convolution layer by exploring a larger convolution kernel and multiple processing paths. With the proposed large kernel convolution model, we extend the optic neural network application boundary to the segmentation task. To further lighten the computation burden of the digital processing part, a set of model compression methods is applied to improve model efficiency in the inference stage. The experimental results on three publicly available datasets demonstrate that the optimized efficient design improved segmentation performance from 92.45 to 95.97 on mIoU while reducing computational FLOPs from 461.07 MMacs to 166.03 MMacs. The proposed the large kernel lightweight model ExtremeMETA showcases the hybrid design's ability on complex tasks.
Abstract:Deep neural networks (DNNs) utilized recently are physically deployed with computational units (e.g., CPUs and GPUs). Such a design might lead to a heavy computational burden, significant latency, and intensive power consumption, which are critical limitations in applications such as the Internet of Things (IoT), edge computing, and the usage of drones. Recent advances in optical computational units (e.g., metamaterial) have shed light on energy-free and light-speed neural networks. However, the digital design of the metamaterial neural network (MNN) is fundamentally limited by its physical limitations, such as precision, noise, and bandwidth during fabrication. Moreover, the unique advantages of MNN's (e.g., light-speed computation) are not fully explored via standard 3x3 convolution kernels. In this paper, we propose a novel large kernel metamaterial neural network (LMNN) that maximizes the digital capacity of the state-of-the-art (SOTA) MNN with model re-parametrization and network compression, while also considering the optical limitation explicitly. The new digital learning scheme can maximize the learning capacity of MNN while modeling the physical restrictions of meta-optic. With the proposed LMNN, the computation cost of the convolutional front-end can be offloaded into fabricated optical hardware. The experimental results on two publicly available datasets demonstrate that the optimized hybrid design improved classification accuracy while reducing computational latency. The development of the proposed LMNN is a promising step towards the ultimate goal of energy-free and light-speed AI.
Abstract:Rapid developments in machine vision have led to advances in a variety of industries, from medical image analysis to autonomous systems. These achievements, however, typically necessitate digital neural networks with heavy computational requirements, which are limited by high energy consumption and further hinder real-time decision-making when computation resources are not accessible. Here, we demonstrate an intelligent meta-imager that is designed to work in concert with a digital back-end to off-load computationally expensive convolution operations into high-speed and low-power optics. In this architecture, metasurfaces enable both angle and polarization multiplexing to create multiple information channels that perform positive and negatively valued convolution operations in a single shot. The meta-imager is employed for object classification, experimentally achieving 98.6% accurate classification of handwritten digits and 88.8% accuracy in classifying fashion images. With compactness, high speed, and low power consumption, this approach could find a wide range of applications in artificial intelligence and machine vision applications.