Deep neural networks (DNNs) have heavily relied on traditional computational units like CPUs and GPUs. However, this conventional approach brings significant computational burdens, latency issues, and high power consumption, limiting their effectiveness. This has sparked the need for lightweight networks like ExtremeC3Net. On the other hand, there have been notable advancements in optical computational units, particularly with metamaterials, offering the exciting prospect of energy-efficient neural networks operating at the speed of light. Yet, the digital design of metamaterial neural networks (MNNs) faces challenges such as precision, noise, and bandwidth, limiting their application to intuitive tasks and low-resolution images. In this paper, we propose a large kernel lightweight segmentation model, ExtremeMETA. Based on the ExtremeC3Net, the ExtremeMETA maximizes the ability of the first convolution layer by exploring a larger convolution kernel and multiple processing paths. With the proposed large kernel convolution model, we extend the optic neural network application boundary to the segmentation task. To further lighten the computation burden of the digital processing part, a set of model compression methods is applied to improve model efficiency in the inference stage. The experimental results on three publicly available datasets demonstrate that the optimized efficient design improved segmentation performance from 92.45 to 95.97 on mIoU while reducing computational FLOPs from 461.07 MMacs to 166.03 MMacs. The proposed the large kernel lightweight model ExtremeMETA showcases the hybrid design's ability on complex tasks.