Abstract:Rare object detection is a fundamental task in applied geospatial machine learning, however is often challenging due to large amounts of high-resolution satellite or aerial imagery and few or no labeled positive samples to start with. This paper addresses the problem of bootstrapping such a rare object detection task assuming there is no labeled data and no spatial prior over the area of interest. We propose novel offline and online cluster-based approaches for sampling patches that are significantly more efficient, in terms of exposing positive samples to a human annotator, than random sampling. We apply our methods for identifying bomas, or small enclosures for herd animals, in the Serengeti Mara region of Kenya and Tanzania. We demonstrate a significant enhancement in detection efficiency, achieving a positive sampling rate increase from 2% (random) to 30%. This advancement enables effective machine learning mapping even with minimal labeling budgets, exemplified by an F1 score on the boma detection task of 0.51 with a budget of 300 total patches.
Abstract:Localizing and counting large ungulates -- hoofed mammals like cows and elk -- in very high-resolution satellite imagery is an important task for supporting ecological studies. Prior work has shown that this is feasible with deep learning based methods and sub-meter multi-spectral satellite imagery. We extend this line of work by proposing a baseline method, CowNet, that simultaneously estimates the number of animals in an image (counts), as well as predicts their location at a pixel level (localizes). We also propose an methodology for evaluating such models on counting and localization tasks across large scenes that takes the uncertainty of noisy labels and the information needed by stakeholders in ecological monitoring tasks into account. Finally, we benchmark our baseline method with state of the art vision methods for counting objects in scenes. We specifically test the temporal generalization of the resulting models over a large landscape in Point Reyes Seashore, CA. We find that the LC-FCN model performs the best and achieves an average precision between 0.56 and 0.61 and an average recall between 0.78 and 0.92 over three held out test scenes.