Abstract:In this study, we propose a robust set of features derived from a thorough research of contemporary practices in voice pathology detection. The feature set is based on the combination of acoustic handcrafted features. Additionally, we introduce pitch difference as a novel feature. We combine this feature set, containing data from the publicly available Saarbr\"ucken Voice Database (SVD), with preprocessing using the K-Means Synthetic Minority Over-Sampling Technique algorithm to address class imbalance. Moreover, we applied multiple ML models as binary classifiers. We utilized support vector machine, k-nearest neighbors, naive Bayes, decision tree, random forest and AdaBoost classifiers. To determine the best classification approach, we performed grid search on feasible hyperparameters of respective classifiers and subsections of features. Our approach has achieved the state-of-the-art performance, measured by unweighted average recall in voice pathology detection on SVD database. We intentionally omit accuracy as it is highly biased metric in case of unbalanced data compared to aforementioned metrics. The results are further enhanced by eliminating the potential overestimation of the results with repeated stratified cross-validation. This advancement demonstrates significant potential for the clinical deployment of ML methods, offering a valuable tool for an objective examination of voice pathologies. To support our claims, we provide a publicly available GitHub repository with DOI 10.5281/zenodo.13771573. Finally, we provide REFORMS checklist.
Abstract:Facial nerve paresis is a severe complication that arises post-head and neck surgery; This results in articulation problems, facial asymmetry, and severe problems in non-verbal communication. To overcome the side effects of post-surgery facial paralysis, rehabilitation requires which last for several weeks. This paper discusses an unsupervised approach to rehabilitating patients who have temporary facial paralysis due to damage in mimetic muscles. The work aims to make the rehabilitation process objective compared to the current subjective approach, such as House-Brackmann (HB) scale. Also, the approach will assist clinicians by reducing their workload in assessing the improvement during rehabilitation. This paper focuses on the clustering approach to monitor the rehabilitation process. We compare the results obtained from different clustering algorithms on various forms of the same data set, namely dynamic form, data expressed as functional data using B-spline basis expansion, and by finding the functional principal components of the functional data. The study contains data set of 85 distinct patients with 120 measurements obtained using a Kinect stereo-vision camera. The method distinguish effectively between patients with the least and greatest degree of facial paralysis, however patients with adjacent degrees of paralysis provide some challenges. In addition, we compared the cluster results to the HB scale outputs.