Abstract:Diagnosing medical conditions from histopathology data requires a thorough analysis across the various resolutions of Whole Slide Images (WSI). However, existing generative methods fail to consistently represent the hierarchical structure of WSIs due to a focus on high-fidelity patches. To tackle this, we propose Ultra-Resolution Cascaded Diffusion Models (URCDMs) which are capable of synthesising entire histopathology images at high resolutions whilst authentically capturing the details of both the underlying anatomy and pathology at all magnification levels. We evaluate our method on three separate datasets, consisting of brain, breast and kidney tissue, and surpass existing state-of-the-art multi-resolution models. Furthermore, an expert evaluation study was conducted, demonstrating that URCDMs consistently generate outputs across various resolutions that trained evaluators cannot distinguish from real images. All code and additional examples can be found on GitHub.
Abstract:Diagnoses from histopathology images rely on information from both high and low resolutions of Whole Slide Images. Ultra-Resolution Cascaded Diffusion Models (URCDMs) allow for the synthesis of high-resolution images that are realistic at all magnification levels, focusing not only on fidelity but also on long-distance spatial coherency. Our model beats existing methods, improving the pFID-50k [2] score by 110.63 to 39.52 pFID-50k. Additionally, a human expert evaluation study was performed, reaching a weighted Mean Absolute Error (MAE) of 0.11 for the Lower Resolution Diffusion Models and a weighted MAE of 0.22 for the URCDM.
Abstract:Poor performance of quantitative analysis in histopathological Whole Slide Images (WSI) has been a significant obstacle in clinical practice. Annotating large-scale WSIs manually is a demanding and time-consuming task, unlikely to yield the expected results when used for fully supervised learning systems. Rarely observed disease patterns and large differences in object scales are difficult to model through conventional patient intake. Prior methods either fall back to direct disease classification, which only requires learning a few factors per image, or report on average image segmentation performance, which is highly biased towards majority observations. Geometric image augmentation is commonly used to improve robustness for average case predictions and to enrich limited datasets. So far no method provided sampling of a realistic posterior distribution to improve stability, e.g. for the segmentation of imbalanced objects within images. Therefore, we propose a new approach, based on diffusion models, which can enrich an imbalanced dataset with plausible examples from underrepresented groups by conditioning on segmentation maps. Our method can simply expand limited clinical datasets making them suitable to train machine learning pipelines, and provides an interpretable and human-controllable way of generating histopathology images that are indistinguishable from real ones to human experts. We validate our findings on two datasets, one from the public domain and one from a Kidney Transplant study.