Abstract:This article presents an evolutionary approach for synthetic human portraits generation based on the latent space exploration of a generative adversarial network. The idea is to produce different human face images very similar to a given target portrait. The approach applies StyleGAN2 for portrait generation and FaceNet for face similarity evaluation. The evolutionary search is based on exploring the real-coded latent space of StyleGAN2. The main results over both synthetic and real images indicate that the proposed approach generates accurate and diverse solutions, which represent realistic human portraits. The proposed research can contribute to improving the security of face recognition systems.
Abstract:This article presents the problem of locating electric vehicle (EV) charging stations in a city by defining the Electric Vehicle Charging Stations Locations (EV-CSL) problem. The idea is to minimize the distance the citizens have to travel to charge their vehicles. EV-CSL takes into account the maximum number of charging stations to install and the electric power requirements. Two metaheuristics are applied to address the relying optimization problem: a genetic algorithm (GA) and a variable neighborhood search (VNS). The experimental analysis over a realistic scenario of Malaga city, Spain, shows that the metaheuristics are able to find competitive solutions which dramatically improve the actual installation of the stations in Malaga. GA provided statistically the best results.
Abstract:This article introduces Random Error Sampling-based Neuroevolution (RESN), a novel automatic method to optimize recurrent neural network architectures. RESN combines an evolutionary algorithm with a training-free evaluation approach. The results show that RESN achieves state-of-the-art error performance while reducing by half the computational time.
Abstract:Generative adversary networks (GANs) suffer from training pathologies such as instability and mode collapse, which mainly arise from a lack of diversity in their adversarial interactions. Co-evolutionary GAN (CoE-GAN) training algorithms have shown to be resilient to these pathologies. This article introduces Mustangs, a spatially distributed CoE-GAN, which fosters diversity by using different loss functions during the training. Experimental analysis on MNIST and CelebA demonstrated that Mustangs trains statistically more accurate generators.
Abstract:Municipal solid waste management is a major challenge for nowadays urban societies, because it accounts for a large proportion of public budget and, when mishandled, it can lead to environmental and social problems. This work focuses on the problem of locating waste bins in an urban area, which is considered to have a strong influence in the overall efficiency of the reverse logistic chain. This article contributes with an exact multiobjective approach to solve the waste bin location in which the optimization criteria that are considered are: the accessibility to the system (as quality of service measure), the investment cost, and the required frequency of waste removal from the bins (as a proxy of the posterior routing costs). In this approach, different methods to obtain the objectives ideal and nadir values over the Pareto front are proposed and compared. Then, a family of heuristic methods based on the PageRank algorithm is proposed which aims to optimize the accessibility to the system, the amount of collected waste and the installation cost. The experimental evaluation was performed on real-world scenarios of the cities of Montevideo, Uruguay, and Bah\'ia Blanca, Argentina. The obtained results show the competitiveness of the proposed approaches for constructing a set of candidate solutions that considers the different trade-offs between the optimization criteria.
Abstract:Generative adversarial networks (GANs) exhibit training pathologies that can lead to convergence-related degenerative behaviors, whereas spatially-distributed, coevolutionary algorithms (CEAs) for GAN training, e.g. Lipizzaner, are empirically robust to them. The robustness arises from diversity that occurs by training populations of generators and discriminators in each cell of a toroidal grid. Communication, where signals in the form of parameters of the best GAN in a cell propagate in four directions: North, South, West, and East, also plays a role, by communicating adaptations that are both new and fit. We propose Lipi-Ring, a distributed CEA like Lipizzaner, except that it uses a different spatial topology, i.e. a ring. Our central question is whether the different directionality of signal propagation (effectively migration to one or more neighbors on each side of a cell) meets or exceeds the performance quality and training efficiency of Lipizzaner Experimental analysis on different datasets (i.e, MNIST, CelebA, and COVID-19 chest X-ray images) shows that there are no significant differences between the performances of the trained generative models by both methods. However, Lipi-Ring significantly reduces the computational time (14.2%. . . 41.2%). Thus, Lipi-Ring offers an alternative to Lipizzaner when the computational cost of training matters.
Abstract:This is a relevant problem because the design of most cities prioritizes the use of motorized vehicles, which has degraded air quality in recent years, having a negative effect on urban health. Modeling, predicting, and forecasting ambient air pollution is an important way to deal with this issue because it would be helpful for decision-makers and urban city planners to understand the phenomena and to take solutions. In general, data-driven methods for modeling, predicting, and forecasting outdoor pollution requires an important amount of data, which may limit their accuracy. In order to deal with such a lack of data, we propose to train models able to generate synthetic nitrogen dioxide daily time series according to a given classification that will allow an unlimited generation of realistic data. The main experimental results indicate that the proposed approach is able to generate accurate and diverse pollution daily time series, while requiring reduced computational time.
Abstract:Distributed coevolutionary Generative Adversarial Network (GAN) training has empirically shown success in overcoming GAN training pathologies. This is mainly due to diversity maintenance in the populations of generators and discriminators during the training process. The method studied here coevolves sub-populations on each cell of a spatial grid organized into overlapping Moore neighborhoods. We investigate the impact on the performance of two algorithm components that influence the diversity during coevolution: the performance-based selection/replacement inside each sub-population and the communication through migration of solutions (networks) among overlapping neighborhoods. In experiments on MNIST dataset, we find that the combination of these two components provides the best generative models. In addition, migrating solutions without applying selection in the sub-populations achieves competitive results, while selection without communication between cells reduces performance.
Abstract:Generative adversarial networks (GANs) are widely used to learn generative models. GANs consist of two networks, a generator and a discriminator, that apply adversarial learning to optimize their parameters. This article presents a parallel/distributed implementation of a cellular competitive coevolutionary method to train two populations of GANs. A distributed memory parallel implementation is proposed for execution in high performance/supercomputing centers. Efficient results are reported on addressing the generation of handwritten digits (MNIST dataset samples). Moreover, the proposed implementation is able to reduce the training times and scale properly when considering different grid sizes for training.
Abstract:We investigate training Generative Adversarial Networks, GANs, with less data. Subsets of the training dataset can express empirical sample diversity while reducing training resource requirements, e.g. time and memory. We ask how much data reduction impacts generator performance and gauge the additive value of generator ensembles. In addition to considering stand-alone GAN training and ensembles of generator models, we also consider reduced data training on an evolutionary GAN training framework named Redux-Lipizzaner. Redux-Lipizzaner makes GAN training more robust and accurate by exploiting overlapping neighborhood-based training on a spatial 2D grid. We conduct empirical experiments on Redux-Lipizzaner using the MNIST and CelebA data sets.