Abstract:In this work, we solve the problem of finding the best locations to place stations for depositing/collecting shared bicycles. To do this, we model the problem as the p-median problem, that is a major existing localization problem in optimization. The p-median problem seeks to place a set of facilities (bicycle stations) in a way that minimizes the distance between a set of clients (citizens) and their closest facility (bike station). We have used a genetic algorithm, iterated local search, particle swarm optimization, simulated annealing, and variable neighbourhood search, to find the best locations for the bicycle stations and study their comparative advantages. We use irace to parameterize each algorithm automatically, to contribute with a methodology to fine-tune algorithms automatically. We have also studied different real data (distance and weights) from diverse open data sources from a real city, Malaga (Spain), hopefully leading to a final smart city application. We have compared our results with the implemented solution in Malaga. Finally, we have analyzed how we can use our proposal to improve the existing system in the city by adding more stations.
Abstract:This article presents the problem of locating electric vehicle (EV) charging stations in a city by defining the Electric Vehicle Charging Stations Locations (EV-CSL) problem. The idea is to minimize the distance the citizens have to travel to charge their vehicles. EV-CSL takes into account the maximum number of charging stations to install and the electric power requirements. Two metaheuristics are applied to address the relying optimization problem: a genetic algorithm (GA) and a variable neighborhood search (VNS). The experimental analysis over a realistic scenario of Malaga city, Spain, shows that the metaheuristics are able to find competitive solutions which dramatically improve the actual installation of the stations in Malaga. GA provided statistically the best results.