CIMS
Abstract:The Procrustes-Wasserstein problem consists in matching two high-dimensional point clouds in an unsupervised setting, and has many applications in natural language processing and computer vision. We consider a planted model with two datasets $X,Y$ that consist of $n$ datapoints in $\mathbb{R}^d$, where $Y$ is a noisy version of $X$, up to an orthogonal transformation and a relabeling of the data points. This setting is related to the graph alignment problem in geometric models. In this work, we focus on the euclidean transport cost between the point clouds as a measure of performance for the alignment. We first establish information-theoretic results, in the high ($d \gg \log n$) and low ($d \ll \log n$) dimensional regimes. We then study computational aspects and propose the Ping-Pong algorithm, alternatively estimating the orthogonal transformation and the relabeling, initialized via a Franke-Wolfe convex relaxation. We give sufficient conditions for the method to retrieve the planted signal after one single step. We provide experimental results to compare the proposed approach with the state-of-the-art method of Grave et al. (2019).
Abstract:This work studies operators mapping vector and scalar fields defined over a manifold $\mathcal{M}$, and which commute with its group of diffeomorphisms $\text{Diff}(\mathcal{M})$. We prove that in the case of scalar fields $L^p_\omega(\mathcal{M,\mathbb{R}})$, those operators correspond to point-wise non-linearities, recovering and extending known results on $\mathbb{R}^d$. In the context of Neural Networks defined over $\mathcal{M}$, it indicates that point-wise non-linear operators are the only universal family that commutes with any group of symmetries, and justifies their systematic use in combination with dedicated linear operators commuting with specific symmetries. In the case of vector fields $L^p_\omega(\mathcal{M},T\mathcal{M})$, we show that those operators are solely the scalar multiplication. It indicates that $\text{Diff}(\mathcal{M})$ is too rich and that there is no universal class of non-linear operators to motivate the design of Neural Networks over the symmetries of $\mathcal{M}$.