Abstract:Machine learning methods have seen a meteoric rise in their applications in the scientific community. However, little effort has been put into understanding these "black box" models. We show how one can apply integrated gradients (IGs) to understand these models by designing different baselines, by taking an example case study in particle physics. We find that the zero-vector baseline does not provide good feature attributions and that an averaged baseline sampled from the background events provides consistently more reasonable attributions.
Abstract:We construct a surrogate loss to directly optimise the significance metric used in particle physics. We evaluate our loss function for a simple event classification task using a linear model and show that it produces decision boundaries that change according to the cross sections of the processes involved. We find that the models trained with the new loss have higher signal efficiency for similar values of estimated signal significance compared to ones trained with a cross-entropy loss, showing promise to improve sensitivity of particle physics searches at colliders.
Abstract:We introduce $\texttt{ReMOVE}$, a novel reference-free metric for assessing object erasure efficacy in diffusion-based image editing models post-generation. Unlike existing measures such as LPIPS and CLIPScore, $\texttt{ReMOVE}$ addresses the challenge of evaluating inpainting without a reference image, common in practical scenarios. It effectively distinguishes between object removal and replacement. This is a key issue in diffusion models due to stochastic nature of image generation. Traditional metrics fail to align with the intuitive definition of inpainting, which aims for (1) seamless object removal within masked regions (2) while preserving the background continuity. $\texttt{ReMOVE}$ not only correlates with state-of-the-art metrics and aligns with human perception but also captures the nuanced aspects of the inpainting process, providing a finer-grained evaluation of the generated outputs.