Abstract:The spoken language serves as an accessible and efficient interface, enabling non-experts and disabled users to interact with complex assistant robots. However, accurately grounding language utterances gives a significant challenge due to the acoustic variability in speakers' voices and environmental noise. In this work, we propose a novel speech-scene graph grounding network (SGGNet$^2$) that robustly grounds spoken utterances by leveraging the acoustic similarity between correctly recognized and misrecognized words obtained from automatic speech recognition (ASR) systems. To incorporate the acoustic similarity, we extend our previous grounding model, the scene-graph-based grounding network (SGGNet), with the ASR model from NVIDIA NeMo. We accomplish this by feeding the latent vector of speech pronunciations into the BERT-based grounding network within SGGNet. We evaluate the effectiveness of using latent vectors of speech commands in grounding through qualitative and quantitative studies. We also demonstrate the capability of SGGNet$^2$ in a speech-based navigation task using a real quadruped robot, RBQ-3, from Rainbow Robotics.
Abstract:We present the problem of inverse constraint learning (ICL), which recovers constraints from demonstrations to autonomously reproduce constrained skills in new scenarios. However, ICL suffers from an ill-posed nature, leading to inaccurate inference of constraints from demonstrations. To figure it out, we introduce a transferable constraint learning (TCL) algorithm that jointly infers a task-oriented reward and a task-agnostic constraint, enabling the generalization of learned skills. Our method TCL additively decomposes the overall reward into a task reward and its residual as soft constraints, maximizing policy divergence between task- and constraint-oriented policies to obtain a transferable constraint. Evaluating our method and four baselines in three simulated environments, we show TCL outperforms state-of-the-art IRL and ICL algorithms, achieving up to a $72\%$ higher task-success rates with accurate decomposition compared to the next best approach in novel scenarios. Further, we demonstrate the robustness of TCL on a real-world robotic tray-carrying task.