Abstract:Self-supervised learning (SSL) approaches such as wav2vec 2.0 and HuBERT models have shown promising results in various downstream tasks in the speech community. In particular, speech representations learned by SSL models have been shown to be effective for encoding various speech-related characteristics. In this context, we propose a novel automatic pronunciation assessment method based on SSL models. First, the proposed method fine-tunes the pre-trained SSL models with connectionist temporal classification to adapt the English pronunciation of English-as-a-second-language (ESL) learners in a data environment. Then, the layer-wise contextual representations are extracted from all across the transformer layers of the SSL models. Finally, the automatic pronunciation score is estimated using bidirectional long short-term memory with the layer-wise contextual representations and the corresponding text. We show that the proposed SSL model-based methods outperform the baselines, in terms of the Pearson correlation coefficient, on datasets of Korean ESL learner children and Speechocean762. Furthermore, we analyze how different representations of transformer layers in the SSL model affect the performance of the pronunciation assessment task.
Abstract:Recently, several types of end-to-end speech recognition methods named transformer-transducer were introduced. According to those kinds of methods, transcription networks are generally modeled by transformer-based neural networks, while prediction networks could be modeled by either transformers or recurrent neural networks (RNN). This paper explores multitask learning, joint optimization, and joint decoding methods for transformer-RNN-transducer systems. Our proposed methods have the main advantage in that the model can maintain information on the large text corpus. We prove their effectiveness by performing experiments utilizing the well-known ESPNET toolkit for the widely used Librispeech datasets. We also show that the proposed methods can reduce word error rate (WER) by 16.6 % and 13.3 % for test-clean and test-other datasets, respectively, without changing the overall model structure nor exploiting an external LM.