Abstract:Inference methods are often formulated as variational approximations: these approximations allow easy evaluation of statistics by marginalization or linear response, but these estimates can be inconsistent. We show that by introducing constraints on covariance, one can ensure consistency of linear response with the variational parameters, and in so doing inference of marginal probability distributions is improved. For the Bethe approximation and its generalizations, improvements are achieved with simple choices of the constraints. The approximations are presented as variational frameworks; iterative procedures related to message passing are provided for finding the minima.
Abstract:Variational inference is a powerful concept that underlies many iterative approximation algorithms; expectation propagation, mean-field methods and belief propagations were all central themes at the school that can be perceived from this unifying framework. The lectures of Manfred Opper introduce the archetypal example of Expectation Propagation, before establishing the connection with the other approximation methods. Corrections by expansion about the expectation propagation are then explained. Finally some advanced inference topics and applications are explored in the final sections.