Abstract:Large-scale astrophysics datasets present an opportunity for new machine learning techniques to identify regions of interest that might otherwise be overlooked by traditional searches. To this end, we use Classification Without Labels (CWoLa), a weakly-supervised anomaly detection method, to identify cold stellar streams within the more than one billion Milky Way stars observed by the Gaia satellite. CWoLa operates without the use of labeled streams or knowledge of astrophysical principles. Instead, we train a classifier to distinguish between mixed samples for which the proportions of signal and background samples are unknown. This computationally lightweight strategy is able to detect both simulated streams and the known stream GD-1 in data. Originally designed for high-energy collider physics, this technique may have broad applicability within astrophysics as well as other domains interested in identifying localized anomalies.
Abstract:I present a Variational Autoencoder (VAE) trained on collider physics data (specifically boosted $W$ jets), with reconstruction error given by an approximation to the Earth Movers Distance (EMD) between input and output jets. This VAE learns a concrete representation of the data manifold, with semantically meaningful and interpretable latent space directions which are hierarchically organized in terms of their relation to physical EMD scales in the underlying physical generative process. A hyperparameter $\beta$ controls the resolution at which the VAE is sensitive to structures in the data manifold. The variation of the latent space structure with $\beta$, and the scaling of some VAE properties, provide insight into scale dependent structure of the dataset and its information complexity. I introduce two measures of the dimensionality of the learnt representation that are calculated from this scaling.
Abstract:Anomaly detection techniques are growing in importance at the Large Hadron Collider (LHC), motivated by the increasing need to search for new physics in a model-agnostic way. In this work, we provide a detailed comparative study between a well-studied unsupervised method called the autoencoder (AE) and a weakly-supervised approach based on the Classification Without Labels (CWoLa) technique. We examine the ability of the two methods to identify a new physics signal at different cross sections in a fully hadronic resonance search. By construction, the AE classification performance is independent of the amount of injected signal. In contrast, the CWoLa performance improves with increasing signal abundance. When integrating these approaches with a complete background estimate, we find that the two methods have complementary sensitivity. In particular, CWoLa is effective at finding diverse and moderately rare signals while the AE can provide sensitivity to very rare signals, but only with certain topologies. We therefore demonstrate that both techniques are complementary and can be used together for anomaly detection at the LHC.