Abstract:Controlling the departure time of the trucks from a container hub is important to both the traffic and the logistics systems. This, however, requires an intelligent decision support system that can control and manage truck arrival times at terminal gates. This paper introduces an integrated model that can be used to understand, predict, and control logistics and traffic interactions in the port-hinterland ecosystem. This approach is context-aware and makes use of big historical data to predict system states and apply control policies accordingly, on truck inflow and outflow. The control policies ensure multiple stakeholders satisfaction including those of trucking companies, terminal operators, and road traffic agencies. The proposed method consists of five integrated modules orchestrated to systematically steer truckers toward choosing those time slots that are expected to result in lower gate waiting times and more cost-effective schedules. The simulation is supported by real-world data and shows that significant gains can be obtained in the system.
Abstract:This paper presents a modeling approach to infer scheduling and routing patterns from digital freight transport activity data for different freight markets. We provide a complete modeling framework including a new discrete-continuous decision tree approach for extracting rules from the freight transport data. We apply these models to collected tour data for the Netherlands to understand departure time patterns and tour strategies, also allowing us to evaluate the effectiveness of the proposed algorithm. We find that spatial and temporal characteristics are important to capture the types of tours and time-of-day patterns of freight activities. Also, the empirical evidence indicates that carriers in most of the transport markets are sensitive to the level of congestion. Many of them adjust the type of tour, departure time, and the number of stops per tour when facing a congested zone. The results can be used by practitioners to get more grip on transport markets and develop freight and traffic management measures.
Abstract:As the deployment of autonomous vehicles (AVs) becomes increasingly prevalent, ensuring safe and smooth interactions between AVs and other human agents is of critical importance. In the urban environment, how vehicles resolve conflicts has significant impacts on both driving safety and traffic efficiency. To expedite the studies on evaluating conflict resolution in AV-involved and AV-free scenarios at intersections, this paper presents a high-quality dataset derived from the open Argoverse-2 motion forecasting data. First, scenarios of interest are selected by applying a set of heuristic rules regarding post-encroachment time (PET), minimum distance, trajectory crossing, and speed variation. Next, the quality of the raw data is carefully examined. We found that position and speed data are not consistent in Argoverse-2 data and its improper processing induced unnecessary errors. To address these specific problems, we propose and apply a data processing pipeline to correct and enhance the raw data. As a result, 5k+ AV-involved scenarios and 16k+ AV-free scenarios with smooth and consistent position, speed, acceleration, and heading direction data are obtained. Further assessments show that this dataset comprises diverse and balanced conflict resolution regimes. This informative dataset provides a valuable resource for researchers and practitioners in the field of autonomous vehicle assessment and regulation. The dataset is openly available via https://github.com/RomainLITUD/conflict_resolution_dataset.
Abstract:Car-Following (CF), as a fundamental driving behaviour, has significant influences on the safety and efficiency of traffic flow. Investigating how human drivers react differently when following autonomous vs. human-driven vehicles (HV) is thus critical for mixed traffic flow. Research in this field can be expedited with trajectory datasets collected by Autonomous Vehicles (AVs). However, trajectories collected by AVs are noisy and not readily applicable for studying CF behaviour. This paper extracts and enhances two categories of CF data, HV-following-AV (H-A) and HV-following-HV (H-H), from the open Lyft level-5 dataset. First, CF pairs are selected based on specific rules. Next, the quality of raw data is assessed by anomaly analysis. Then, the raw CF data is corrected and enhanced via motion planning, Kalman filtering, and wavelet denoising. As a result, 29k+ H-A and 42k+ H-H car-following segments are obtained, with a total driving distance of 150k+ km. A diversity assessment shows that the processed data cover complete CF regimes for calibrating CF models. This open and ready-to-use dataset provides the opportunity to investigate the CF behaviours of following AVs vs. HVs from real-world data. It can further facilitate studies on exploring the impact of AVs on mixed urban traffic.