Abstract:Neural models for amortized probabilistic clustering yield samples of cluster labels given a set-structured input, while avoiding lengthy Markov chain runs and the need for explicit data likelihoods. Existing methods which label each data point sequentially, like the Neural Clustering Process, often lead to cluster assignments highly dependent on the data order. Alternatively, methods that sequentially create full clusters, do not provide assignment probabilities. In this paper, we introduce GFNCP, a novel framework for amortized clustering. GFNCP is formulated as a Generative Flow Network with a shared energy-based parametrization of policy and reward. We show that the flow matching conditions are equivalent to consistency of the clustering posterior under marginalization, which in turn implies order invariance. GFNCP also outperforms existing methods in clustering performance on both synthetic and real-world data.
Abstract:Nonlinear activation functions are pivotal to the success of deep neural nets, and choosing the appropriate activation function can significantly affect their performance. Most networks use fixed activation functions (e.g., ReLU, GELU, etc.), and this choice might limit their expressiveness. Furthermore, different layers may benefit from diverse activation functions. Consequently, there has been a growing interest in trainable activation functions. In this paper, we introduce DiTAC, a trainable highly-expressive activation function based on an efficient diffeomorphic transformation (called CPAB). Despite introducing only a negligible number of trainable parameters, DiTAC enhances model expressiveness and performance, often yielding substantial improvements. It also outperforms existing activation functions (regardless whether the latter are fixed or trainable) in tasks such as semantic segmentation, image generation, regression problems, and image classification. Our code is available at https://github.com/BGU-CS-VIL/DiTAC.