Abstract:Autonomous driving technology is progressing rapidly, largely due to complex End To End systems based on deep neural networks. While these systems are effective, their complexity can make it difficult to understand their behavior, raising safety concerns. This paper presents a new solution a Behavior Selector that uses multiple smaller artificial neural networks (ANNs) to manage different driving tasks, such as lane following and turning. Rather than relying on a single large network, which can be burdensome, require extensive training data, and is hard to understand, the developed approach allows the system to dynamically select the appropriate neural network for each specific behavior (e.g., turns) in real time. We focus on ensuring smooth transitions between behaviors while considering the vehicles current speed and orientation to improve stability and safety. The proposed system has been tested using the AirSim simulation environment, demonstrating its effectiveness.
Abstract:Environment perception is a fundamental part of the dynamic driving task executed by Autonomous Driving Systems (ADS). Artificial Intelligence (AI)-based approaches have prevailed over classical techniques for realizing the environment perception. Current safety-relevant standards for automotive systems, International Organization for Standardization (ISO) 26262 and ISO 21448, assume the existence of comprehensive requirements specifications. These specifications serve as the basis on which the functionality of an automotive system can be rigorously tested and checked for compliance with safety regulations. However, AI-based perception systems do not have complete requirements specification. Instead, large datasets are used to train AI-based perception systems. This paper presents a function monitor for the functional runtime monitoring of a two-folded AI-based environment perception for ADS, based respectively on camera and LiDAR sensors. To evaluate the applicability of the function monitor, we conduct a qualitative scenario-based evaluation in a controlled laboratory environment using a model car. The evaluation results then are discussed to provide insights into the monitor's performance and its suitability for real-world applications.
Abstract:Automated driving systems can be helpful in a wide range of societal challenges, e.g., mobility-on-demand and transportation logistics for last-mile delivery, by aiding the vehicle driver or taking over the responsibility for the dynamic driving task partially or completely. Ensuring the safety of automated driving systems is no trivial task, even more so for those systems of SAE Level 3 or above. To achieve this, mechanisms are needed that can continuously monitor the system's operating conditions, also denoted as the system's operational design domain. This paper presents a safety concept for automated driving systems which uses a combination of onboard runtime monitoring via connected dependability cage and off-board runtime monitoring via a remote command control center, to continuously monitor the system's ODD. On one side, the connected dependability cage fulfills a double functionality: (1) to monitor continuously the operational design domain of the automated driving system, and (2) to transfer the responsibility in a smooth and safe manner between the automated driving system and the off-board remote safety driver, who is present in the remote command control center. On the other side, the remote command control center enables the remote safety driver the monitoring and takeover of the vehicle's control. We evaluate our safety concept for automated driving systems in a lab environment and on a test field track and report on results and lessons learned.