Abstract:Deforestation, a major contributor to climate change, poses detrimental consequences such as agricultural sector disruption, global warming, flash floods, and landslides. Conventional approaches to urban street tree inventory suffer from inaccuracies and necessitate specialised equipment. To overcome these challenges, this paper proposes an innovative method that leverages deep learning techniques and mobile phone imaging for urban street tree inventory. Our approach utilises a pair of images captured by smartphone cameras to accurately segment tree trunks and compute the diameter at breast height (DBH). Compared to traditional methods, our approach exhibits several advantages, including superior accuracy, reduced dependency on specialised equipment, and applicability in hard-to-reach areas. We evaluated our method on a comprehensive dataset of 400 trees and achieved a DBH estimation accuracy with an error rate of less than 2.5%. Our method holds significant potential for substantially improving forest management practices. By enhancing the accuracy and efficiency of tree inventory, our model empowers urban management to mitigate the adverse effects of deforestation and climate change.