Abstract:The standard paired-sample testing approach in the multidimensional setting applies multiple univariate tests on the individual features, followed by p-value adjustments. Such an approach suffers when the data carry numerous features. A number of studies have shown that classification accuracy can be seen as a proxy for two-sample testing. However, neither theoretical foundations nor practical recipes have been proposed so far on how this strategy could be extended to multidimensional paired-sample testing. In this work, we put forward the idea that scoring functions can be produced by the decision rules defined by the perpendicular bisecting hyperplanes of the line segments connecting each pair of instances. Then, the optimal scoring function can be obtained by the pseudomedian of those rules, which we estimate by extending naturally the Hodges-Lehmann estimator. We accordingly propose a framework of a two-step testing procedure. First, we estimate the bisecting hyperplanes for each pair of instances and an aggregated rule derived through the Hodges-Lehmann estimator. The paired samples are scored by this aggregated rule to produce a unidimensional representation. Second, we perform a Wilcoxon signed-rank test on the obtained representation. Our experiments indicate that our approach has substantial performance gains in testing accuracy compared to the traditional multivariate and multiple testing, while at the same time estimates each feature's contribution to the final result.
Abstract:Falling in Parkinsonian syndromes (PS) is associated with postural instability and consists a common cause of disability among PS patients. Current posturographic practices record the body's center-of-pressure displacement (statokinesigram) while the patient stands on a force platform. Statokinesigrams, after appropriate signal processing, can offer numerous posturographic features, which however challenges the efforts for valid statistics via standard univariate approaches. In this work, we present the ts-AUC, a non-parametric multivariate two-sample test, which we employ to analyze statokinesigram differences among PS patients that are fallers (PSf) and non-fallers (PSNF). We included 123 PS patients who were classified into PSF or PSNF based on clinical assessment and underwent simple Romberg Test (eyes open/eyes closed). We analyzed posturographic features using both multiple testing with p-value adjustment and the ts-AUC. While the ts-AUC showed significant difference between groups (p-value = 0.01), multiple testing did not show any such difference. Interestingly, significant difference between the two groups was found only using the open-eyes protocol. PSF showed significantly increased antero-posterior movements as well as increased posturographic area, compared to PSNF. Our study demonstrates the superiority of the ts-AUC test compared to standard statistical tools in distinguishing PSF and PSNF in the multidimensional feature space. This result highlights more generally the fact that machine learning-based statistical tests can be seen as a natural extension of classical statistical approaches and should be considered, especially when dealing with multifactorial assessments.