Abstract:Patient hand-off and triage are two fundamental problems in health care. Often doctors must painstakingly summarize complex findings to efficiently communicate with specialists and quickly make decisions on which patients have the most urgent cases. In pursuit of these challenges, we present (1) a model with state-of-art radiology report summarization performance using (2) a novel method for augmenting medical data, and (3) an analysis of the model limitations and radiology knowledge gain. We also provide a data processing pipeline for future models developed on the the MIMIC CXR dataset. Our best performing model was a fine-tuned BERT-to-BERT encoder-decoder with 58.75/100 ROUGE-L F1, which outperformed specialized checkpoints with more sophisticated attention mechanisms. We investigate these aspects in this work.
Abstract:Financial analysis is an important tool for evaluating company performance. Practitioners work to answer financial questions to make profitable investment decisions, and use advanced quantitative analyses to do so. As a result, Financial Question Answering (QA) is a question answering task that requires deep reasoning about numbers. Furthermore, it is unknown how well pre-trained language models can reason in the financial domain. The current state-of-the-art requires a retriever to collect relevant facts about the financial question from the text and a generator to produce a valid financial program and a final answer. However, recently large language models like GPT-3 have achieved state-of-the-art performance on wide variety of tasks with just a few shot examples. We run several experiments with GPT-3 and find that a separate retrieval model and logic engine continue to be essential components to achieving SOTA performance in this task, particularly due to the precise nature of financial questions and the complex information stored in financial documents. With this understanding, our refined prompt-engineering approach on GPT-3 achieves near SOTA accuracy without any fine-tuning.
Abstract:Medical professionals frequently work in a data constrained setting to provide insights across a unique demographic. A few medical observations, for instance, informs the diagnosis and treatment of a patient. This suggests a unique setting for meta-learning, a method to learn models quickly on new tasks, to provide insights unattainable by other methods. We investigate the use of meta-learning and robustness techniques on a broad corpus of benchmark text and medical data. To do this, we developed new data pipelines, combined language models with meta-learning approaches, and extended existing meta-learning algorithms to minimize worst case loss. We find that meta-learning on text is a suitable framework for text-based data, providing better data efficiency and comparable performance to few-shot language models and can be successfully applied to medical note data. Furthermore, meta-learning models coupled with DRO can improve worst case loss across disease codes.