Abstract:Patient hand-off and triage are two fundamental problems in health care. Often doctors must painstakingly summarize complex findings to efficiently communicate with specialists and quickly make decisions on which patients have the most urgent cases. In pursuit of these challenges, we present (1) a model with state-of-art radiology report summarization performance using (2) a novel method for augmenting medical data, and (3) an analysis of the model limitations and radiology knowledge gain. We also provide a data processing pipeline for future models developed on the the MIMIC CXR dataset. Our best performing model was a fine-tuned BERT-to-BERT encoder-decoder with 58.75/100 ROUGE-L F1, which outperformed specialized checkpoints with more sophisticated attention mechanisms. We investigate these aspects in this work.
Abstract:Financial analysis is an important tool for evaluating company performance. Practitioners work to answer financial questions to make profitable investment decisions, and use advanced quantitative analyses to do so. As a result, Financial Question Answering (QA) is a question answering task that requires deep reasoning about numbers. Furthermore, it is unknown how well pre-trained language models can reason in the financial domain. The current state-of-the-art requires a retriever to collect relevant facts about the financial question from the text and a generator to produce a valid financial program and a final answer. However, recently large language models like GPT-3 have achieved state-of-the-art performance on wide variety of tasks with just a few shot examples. We run several experiments with GPT-3 and find that a separate retrieval model and logic engine continue to be essential components to achieving SOTA performance in this task, particularly due to the precise nature of financial questions and the complex information stored in financial documents. With this understanding, our refined prompt-engineering approach on GPT-3 achieves near SOTA accuracy without any fine-tuning.