Abstract:In agent-based simulations, synthetic populations of agents are commonly used to represent the structure, behaviour, and interactions of individuals. However, generating a synthetic population that accurately reflects real population statistics is a challenging task, particularly when performed at scale. In this paper, we propose a multi objective combinatorial optimisation technique for large scale population synthesis. We demonstrate the effectiveness of our approach by generating a synthetic population for selected regions and validating it on contingency tables from real population data. Our approach supports complex hierarchical structures between individuals and households, is scalable to large populations and achieves minimal contigency table reconstruction error. Hence, it provides a useful tool for policymakers and researchers for simulating the dynamics of complex populations.
Abstract:In this thesis a comprehensive verification framework is proposed to contend with some important issues in composability verification and a verification process is suggested to verify composability of different kinds of systems models, such as reactive, real-time and probabilistic systems. With an assumption that all these systems are concurrent in nature in which different composed components interact with each other simultaneously, the requirements for the extensive techniques for the structural and behavioral analysis becomes increasingly challenging. The proposed verification framework provides methods, techniques and tool support for verifying composability at its different levels. These levels are defined as foundations of consistent model composability. Each level is discussed in detail and an approach is presented to verify composability at that level. In particular we focus on the Dynamic-Semantic Composability level due to its significance in the overall composability correctness and also due to the level of difficulty it poses in the process. In order to verify composability at this level we investigate the application of three different approaches namely (i) Petri Nets based Algebraic Analysis (ii) Colored Petri Nets (CPN) based State-space Analysis and (iii) Communicating Sequential Processes based Model Checking. All three approaches attack the problem of verifying dynamic-semantic composability in different ways however they all share the same aim i.e., to confirm the correctness of a composed model with respect to its requirement specifications.