Abstract:This article explores the evolution of constructionism as an educational framework, tracing its relevance and transformation across three pivotal eras: the advent of personal computing, the networked society, and the current era of generative AI. Rooted in Seymour Papert constructionist philosophy, this study examines how constructionist principles align with the expanding role of digital technology in personal and collective learning. We discuss the transformation of educational environments from hierarchical instructionism to constructionist models that emphasize learner autonomy and interactive, creative engagement. Central to this analysis is the concept of an expanded personality, wherein digital tools and AI integration fundamentally reshape individual self-perception and social interactions. By integrating constructionism into the paradigm of smart education, we propose it as a foundational approach to personalized and democratized learning. Our findings underscore constructionism enduring relevance in navigating the complexities of technology-driven education, providing insights for educators and policymakers seeking to harness digital innovations to foster adaptive, student-centered learning experiences.
Abstract:In this paper, we perform a non-asymptotic analysis of the federated linear stochastic approximation (FedLSA) algorithm. We explicitly quantify the bias introduced by local training with heterogeneous agents, and investigate the sample complexity of the algorithm. We show that the communication complexity of FedLSA scales polynomially with the desired precision $\epsilon$, which limits the benefits of federation. To overcome this, we propose SCAFFLSA, a novel variant of FedLSA, that uses control variates to correct the bias of local training, and prove its convergence without assumptions on statistical heterogeneity. We apply the proposed methodology to federated temporal difference learning with linear function approximation, and analyze the corresponding complexity improvements.