Abstract:Existing works for aspect-based sentiment analysis (ABSA) have adopted a unified approach, which allows the interactive relations among subtasks. However, we observe that these methods tend to predict polarities based on the literal meaning of aspect and opinion terms and mainly consider relations implicitly among subtasks at the word level. In addition, identifying multiple aspect-opinion pairs with their polarities is much more challenging. Therefore, a comprehensive understanding of contextual information w.r.t. the aspect and opinion are further required in ABSA. In this paper, we propose Deep Contextualized Relation-Aware Network (DCRAN), which allows interactive relations among subtasks with deep contextual information based on two modules (i.e., Aspect and Opinion Propagation and Explicit Self-Supervised Strategies). Especially, we design novel self-supervised strategies for ABSA, which have strengths in dealing with multiple aspects. Experimental results show that DCRAN significantly outperforms previous state-of-the-art methods by large margins on three widely used benchmarks.
Abstract:This paper attempts to analyze the Korean sentence classification system for a chatbot. Sentence classification is the task of classifying an input sentence based on predefined categories. However, spelling or space error contained in the input sentence causes problems in morphological analysis and tokenization. This paper proposes a novel approach of Integrated Eojeol (Korean syntactic word separated by space) Embedding to reduce the effect that poorly analyzed morphemes may make on sentence classification. It also proposes two noise insertion methods that further improve classification performance. Our evaluation results indicate that the proposed system classifies erroneous sentences more accurately than the baseline system by 17%p.0