Abstract:Metallic materials such as brass, copper, and aluminum are used in numerous applications, including industrial manufacturing. The vibration characteristics of these objects are unique and can be used to identify these objects from a distance. This research presents a methodology for detecting and classifying these metallic objects using the vibration dynamics induced by their micro-Doppler signatures. The proposed approach utilizes image processing techniques to extract pivotal features from spectrograms. These spectrograms originate from micro-Doppler signatures of data collected during controlled laboratory experiments where signals were transmitted towards vibrating metal sheets, and the ensuing reflections were recorded using a software-defined radio (SDR). The spectrogram data was augmented using geometric transformation to train a convolutional neural network (CNN) based machine learning model for object classification. The results indicate that the proposed CNN model achieved an accuracy of more than 95% in classifying metals into brass, copper, and aluminum. This research could be used to understand the foundations of classifying spectrogram images using micro-Doppler signatures for its applications towards enhancing the sensing capabilities in industrial and defense applications.
Abstract:The ability of reconfigurable intelligent surfaces (RIS) to produce complex radiation patterns in the far-field is determined by various factors, such as the unit-cell's size, shape, spatial arrangement, tuning mechanism, the communication and control circuitry's complexity, and the illuminating source's type (point/planewave). Research on RIS has been mainly focused on two areas: first, the optimization and design of unit-cells to achieve desired electromagnetic responses within a specific frequency band; and second, exploring the applications of RIS in various settings, including system-level performance analysis. The former does not assume any specific radiation pattern on the surface level, while the latter does not consider any particular unit-cell design. Both approaches largely ignore the complexity and power requirements of the RIS control circuitry. As we progress towards the fabrication and use of RIS in real-world settings, it is becoming increasingly necessary to consider the interplay between the unit-cell design, the required surface-level radiation patterns, the control circuit's complexity, and the power requirements concurrently. In this paper, a benchmarking framework for RIS is employed to compare performance and analyze tradeoffs between the unit-cell's specified radiation patterns and the control circuit's complexity for far-field beamforming, considering different diode-based unit-cell designs for a given surface size. This work lays the foundation for optimizing the design of the unit-cells and surface-level radiation patterns, facilitating the optimization of RIS-assisted wireless communication systems.