Abstract:This paper introduces a new IncidentAI dataset for safety prevention. Different from prior corpora that usually contain a single task, our dataset comprises three tasks: named entity recognition, cause-effect extraction, and information retrieval. The dataset is annotated by domain experts who have at least six years of practical experience as high-pressure gas conservation managers. We validate the contribution of the dataset in the scenario of safety prevention. Preliminary results on the three tasks show that NLP techniques are beneficial for analyzing incident reports to prevent future failures. The dataset facilitates future research in NLP and incident management communities. The access to the dataset is also provided (the IncidentAI dataset is available at: https://github.com/Cinnamon/incident-ai-dataset).
Abstract:The task of Emotion-Cause Pair Extraction (ECPE) aims to extract all potential emotion-cause pairs of a document without any annotation of emotion or cause clauses. Previous approaches on ECPE have tried to improve conventional two-step processing schemes by using complex architectures for modeling emotion-cause interaction. In this paper, we cast the ECPE task to the question answering (QA) problem and propose simple yet effective BERT-based solutions to tackle it. Given a document, our Guided-QA model first predicts the best emotion clause using a fixed question. Then the predicted emotion is used as a question to predict the most potential cause for the emotion. We evaluate our model on a standard ECPE corpus. The experimental results show that despite its simplicity, our Guided-QA achieves promising results and is easy to reproduce. The code of Guided-QA is also provided.