Abstract:Endoscopic surgery relies on intraoperative video, making image quality a decisive factor for surgical safety and efficacy. Yet, endoscopic videos are often degraded by uneven illumination, tissue scattering, occlusions, and motion blur, which obscure critical anatomical details and complicate surgical manipulation. Although deep learning-based methods have shown promise in image enhancement, most existing approaches remain too computationally demanding for real-time surgical use. To address this challenge, we propose a degradation-aware framework for endoscopic video enhancement, which enables real-time, high-quality enhancement by propagating degradation representations across frames. In our framework, degradation representations are first extracted from images using contrastive learning. We then introduce a fusion mechanism that modulates image features with these representations to guide a single-frame enhancement model, which is trained with a cycle-consistency constraint between degraded and restored images to improve robustness and generalization. Experiments demonstrate that our framework achieves a superior balance between performance and efficiency compared with several state-of-the-art methods. These results highlight the effectiveness of degradation-aware modeling for real-time endoscopic video enhancement. Nevertheless, our method suggests that implicitly learning and propagating degradation representation offer a practical pathway for clinical application.




Abstract:Accurate mobile traffic forecast is important for efficient network planning and operations. However, existing traffic forecasting models have high complexity, making the forecasting process slow and costly. In this paper, we analyze some characteristics of mobile traffic such as periodicity, spatial similarity and short term relativity. Based on these characteristics, we propose a \emph{Block Regression} ({BR}) model for mobile traffic forecasting. This model employs seasonal differentiation so as to take into account of the temporally repetitive nature of mobile traffic. One of the key features of our {BR} model lies in its low complexity since it constructs a single model for all base stations. We evaluate the accuracy of {BR} model based on real traffic data and compare it with the existing models. Results show that our {BR} model offers equal accuracy to the existing models but has much less complexity.