Abstract:Image style transfer occupies an important place in both computer graphics and computer vision. However, most current methods require reference to stylized images and cannot individually stylize specific objects. To overcome this limitation, we propose the "Soulstyler" framework, which allows users to guide the stylization of specific objects in an image through simple textual descriptions. We introduce a large language model to parse the text and identify stylization goals and specific styles. Combined with a CLIP-based semantic visual embedding encoder, the model understands and matches text and image content. We also introduce a novel localized text-image block matching loss that ensures that style transfer is performed only on specified target objects, while non-target regions remain in their original style. Experimental results demonstrate that our model is able to accurately perform style transfer on target objects according to textual descriptions without affecting the style of background regions. Our code will be available at https://github.com/yisuanwang/Soulstyler.
Abstract:Audio recognition in specialized areas such as birdsong and submarine acoustics faces challenges in large-scale pre-training due to the limitations in available samples imposed by sampling environments and specificity requirements. While the Transformer model excels in audio recognition, its dependence on vast amounts of data becomes restrictive in resource-limited settings. Addressing this, we introduce the Audio Spectrogram Convolution Attention (ASCA) based on CoAtNet, integrating a Transformer-convolution hybrid architecture, novel network design, and attention techniques, further augmented with data enhancement and regularization strategies. On the BirdCLEF2023 and AudioSet(Balanced), ASCA achieved accuracies of 81.2% and 35.1%, respectively, significantly outperforming competing methods. The unique structure of our model enriches output, enabling generalization across various audio detection tasks. Our code can be found at https://github.com/LeeCiang/ASCA.