Abstract:Skins wrapping around our bodies, leathers covering over the sofa, sheet metal coating the car - it suggests that objects are enclosed by a series of continuous surfaces, which provides us with informative geometry prior for objectness deduction. In this paper, we propose Gaussian-Det which leverages Gaussian Splatting as surface representation for multi-view based 3D object detection. Unlike existing monocular or NeRF-based methods which depict the objects via discrete positional data, Gaussian-Det models the objects in a continuous manner by formulating the input Gaussians as feature descriptors on a mass of partial surfaces. Furthermore, to address the numerous outliers inherently introduced by Gaussian splatting, we accordingly devise a Closure Inferring Module (CIM) for the comprehensive surface-based objectness deduction. CIM firstly estimates the probabilistic feature residuals for partial surfaces given the underdetermined nature of Gaussian Splatting, which are then coalesced into a holistic representation on the overall surface closure of the object proposal. In this way, the surface information Gaussian-Det exploits serves as the prior on the quality and reliability of objectness and the information basis of proposal refinement. Experiments on both synthetic and real-world datasets demonstrate that Gaussian-Det outperforms various existing approaches, in terms of both average precision and recall.
Abstract:In this paper, we propose a One-Point-One NeRF (OPONeRF) framework for robust scene rendering. Existing NeRFs are designed based on a key assumption that the target scene remains unchanged between the training and test time. However, small but unpredictable perturbations such as object movements, light changes and data contaminations broadly exist in real-life 3D scenes, which lead to significantly defective or failed rendering results even for the recent state-of-the-art generalizable methods. To address this, we propose a divide-and-conquer framework in OPONeRF that adaptively responds to local scene variations via personalizing appropriate point-wise parameters, instead of fitting a single set of NeRF parameters that are inactive to test-time unseen changes. Moreover, to explicitly capture the local uncertainty, we decompose the point representation into deterministic mapping and probabilistic inference. In this way, OPONeRF learns the sharable invariance and unsupervisedly models the unexpected scene variations between the training and testing scenes. To validate the effectiveness of the proposed method, we construct benchmarks from both realistic and synthetic data with diverse test-time perturbations including foreground motions, illumination variations and multi-modality noises, which are more challenging than conventional generalization and temporal reconstruction benchmarks. Experimental results show that our OPONeRF outperforms state-of-the-art NeRFs on various evaluation metrics through benchmark experiments and cross-scene evaluations. We further show the efficacy of the proposed method via experimenting on other existing generalization-based benchmarks and incorporating the idea of One-Point-One NeRF into other advanced baseline methods.