Abstract:A major challenge in Reinforcement Learning (RL) is the difficulty of learning an optimal policy from sparse rewards. Prior works enhance online RL with conventional Imitation Learning (IL) via a handcrafted auxiliary objective, at the cost of restricting the RL policy to be sub-optimal when the offline data is generated by a non-expert policy. Instead, to better leverage valuable information in offline data, we develop Generalized Imitation Learning from Demonstration (GILD), which meta-learns an objective that distills knowledge from offline data and instills intrinsic motivation towards the optimal policy. Distinct from prior works that are exclusive to a specific RL algorithm, GILD is a flexible module intended for diverse vanilla off-policy RL algorithms. In addition, GILD introduces no domain-specific hyperparameter and minimal increase in computational cost. In four challenging MuJoCo tasks with sparse rewards, we show that three RL algorithms enhanced with GILD significantly outperform state-of-the-art methods.
Abstract:A major bottleneck in imitation learning is the requirement of a large number of expert demonstrations, which can be expensive or inaccessible. Learning from supplementary demonstrations without strict quality requirements has emerged as a powerful paradigm to address this challenge. However, previous methods often fail to fully utilize their potential by discarding non-expert data. Our key insight is that even demonstrations that fall outside the expert distribution but outperform the learned policy can enhance policy performance. To utilize this potential, we propose a novel approach named imitation learning via meta-learning an action ranker (ILMAR). ILMAR implements weighted behavior cloning (weighted BC) on a limited set of expert demonstrations along with supplementary demonstrations. It utilizes the functional of the advantage function to selectively integrate knowledge from the supplementary demonstrations. To make more effective use of supplementary demonstrations, we introduce meta-goal in ILMAR to optimize the functional of the advantage function by explicitly minimizing the distance between the current policy and the expert policy. Comprehensive experiments using extensive tasks demonstrate that ILMAR significantly outperforms previous methods in handling suboptimal demonstrations. Code is available at https://github.com/F-GOD6/ILMAR.
Abstract:Offline meta-reinforcement learning (meta-RL) methods, which adapt to unseen target tasks with prior experience, are essential in robot control tasks. Current methods typically utilize task contexts and skills as prior experience, where task contexts are related to the information within each task and skills represent a set of temporally extended actions for solving subtasks. However, these methods still suffer from limited performance when adapting to unseen target tasks, mainly because the learned prior experience lacks generalization, i.e., they are unable to extract effective prior experience from meta-training tasks by exploration and learning of continuous latent spaces. We propose a framework called decoupled meta-reinforcement learning (DCMRL), which (1) contrastively restricts the learning of task contexts through pulling in similar task contexts within the same task and pushing away different task contexts of different tasks, and (2) utilizes a Gaussian quantization variational autoencoder (GQ-VAE) for clustering the Gaussian distributions of the task contexts and skills respectively, and decoupling the exploration and learning processes of their spaces. These cluster centers which serve as representative and discrete distributions of task context and skill are stored in task context codebook and skill codebook, respectively. DCMRL can acquire generalizable prior experience and achieve effective adaptation to unseen target tasks during the meta-testing phase. Experiments in the navigation and robot manipulation continuous control tasks show that DCMRL is more effective than previous meta-RL methods with more generalizable prior experience.