Abstract:Large Language models (LLMs) have shown strong capabilities in code review automation, such as review comment generation, yet they suffer from hallucinations -- where the generated review comments are ungrounded in the actual code -- poses a significant challenge to the adoption of LLMs in code review workflows. To address this, we explore effective and scalable methods for a hallucination detection in LLM-generated code review comments without the reference. In this work, we design HalluJudge that aims to assess the grounding of generated review comments based on the context alignment. HalluJudge includes four key strategies ranging from direct assessment to structured multi-branch reasoning (e.g., Tree-of-Thoughts). We conduct a comprehensive evaluation of these assessment strategies across Atlassian's enterprise-scale software projects to examine the effectiveness and cost-efficiency of HalluJudge. Furthermore, we analyze the alignment between HalluJudge's judgment and developer preference of the actual LLM-generated code review comments in the real-world production. Our results show that the hallucination assessment in HalluJudge is cost-effective with an F1 score of 0.85 and an average cost of $0.009. On average, 67% of the HalluJudge assessments are aligned with the developer preference of the actual LLM-generated review comments in the online production. Our results suggest that HalluJudge can serve as a practical safeguard to reduce developers' exposure to hallucinated comments, fostering trust in AI-assisted code reviews.
Abstract:Secure code review is critical at the pre-commit stage, where vulnerabilities must be caught early under tight latency and limited-context constraints. Existing SAST-based checks are noisy and often miss immature, context-dependent vulnerabilities, while standalone Large Language Models (LLMs) are constrained by context windows and lack explicit tool use. Agentic AI, which combine LLMs with autonomous decision-making, tool invocation, and code navigation, offer a promising alternative, but their effectiveness for pre-commit secure code review is not yet well understood. In this work, we introduce AgenticSCR, an agentic AI for secure code review for detecting immature vulnerabilities during the pre-commit stage, augmented by security-focused semantic memories. Using our own curated benchmark of immature vulnerabilities, tailored to the pre-commit secure code review, we empirically evaluate how accurate is our AgenticSCR for localizing, detecting, and explaining immature vulnerabilities. Our results show that AgenticSCR achieves at least 153% relatively higher percentage of correct code review comments than the static LLM-based baseline, and also substantially surpasses SAST tools. Moreover, AgenticSCR generates more correct comments in four out of five vulnerability types, consistently and significantly outperforming all other baselines. These findings highlight the importance of Agentic Secure Code Review, paving the way towards an emerging research area of immature vulnerability detection.
Abstract:Language models have shown strong capabilities across a wide range of tasks in software engineering, such as code generation, yet they suffer from hallucinations. While hallucinations have been studied independently in natural language and code generation, their occurrence in tasks involving code changes which have a structurally complex and context-dependent format of code remains largely unexplored. This paper presents the first comprehensive analysis of hallucinations in two critical tasks involving code change to natural language generation: commit message generation and code review comment generation. We quantify the prevalence of hallucinations in recent language models and explore a range of metric-based approaches to automatically detect them. Our findings reveal that approximately 50\% of generated code reviews and 20\% of generated commit messages contain hallucinations. Whilst commonly used metrics are weak detectors on their own, combining multiple metrics substantially improves performance. Notably, model confidence and feature attribution metrics effectively contribute to hallucination detection, showing promise for inference-time detection.\footnote{All code and data will be released upon acceptance.




Abstract:State-of-the-art large language models (LLMs) have demonstrated impressive code generation capabilities but struggle with real-world software engineering tasks, such as revising source code to address code reviews, hindering their practical use. Code review comments are often implicit, ambiguous, and colloquial, requiring models to grasp both code and human intent. This challenge calls for evaluating large language models' ability to bridge both technical and conversational contexts. While existing work has employed the automated code refinement (ACR) task to resolve these comments, current evaluation methods fall short, relying on text matching metrics that provide limited insight into model failures and remain susceptible to training data contamination. To address these limitations, we introduce a novel evaluation benchmark, $\textbf{CodeReviewQA}$ that enables us to conduct fine-grained assessment of model capabilities and mitigate data contamination risks. In CodeReviewQA, we decompose the generation task of code refinement into $\textbf{three essential reasoning steps}$: $\textit{change type recognition}$ (CTR), $\textit{change localisation}$ (CL), and $\textit{solution identification}$ (SI). Each step is reformulated as multiple-choice questions with varied difficulty levels, enabling precise assessment of model capabilities, while mitigating data contamination risks. Our comprehensive evaluation spans 72 recently released large language models on $\textbf{900 manually curated, high-quality examples}$ across nine programming languages. Our results show that CodeReviewQA is able to expose specific model weaknesses in code review comprehension, disentangled from their generative automated code refinement results.
Abstract:Learning-based techniques, especially advanced pre-trained models for code have demonstrated capabilities in code understanding and generation, solving diverse software engineering (SE) tasks. Despite the promising results, current training approaches may not fully optimize model performance, as they typically involve learning from randomly shuffled training data. Recent work shows that Curriculum Learning (CL) can improve performance on code-related tasks through incremental learning based on the difficulty of synthetic code. Yet, the effectiveness of CL with conventional difficulty measures in SE tasks remains largely unexplored. In this study, we explore two conventional code metrics: code length and cyclomatic complexity to determine the difficulty levels. We investigate how the pre-trained code model (CodeT5) learns under CL, through the tasks of code clone detection and code summarization. Our empirical study on the CodeXGLUE benchmark showed contrasting results to prior studies, where the model exhibited signs of catastrophic forgetting and shortcut learning. Surprisingly, model performance saturates after only the first quartile of training, potentially indicating a limit in the model's representation capacity and/or the task's inherent difficulty. Future work should further explore various CL strategies with different code models across a wider range of SE tasks for a more holistic understanding.