Abstract:Retrieval-augmented generation (RAG) methods are viable solutions for addressing the static memory limits of pre-trained language models. Nevertheless, encountering conflicting sources of information within the retrieval context is an inevitable practical challenge. In such situations, the language models are recommended to transparently inform users about the conflicts rather than autonomously deciding what to present based on their inherent biases. To analyze how current large language models (LLMs) align with our recommendation, we introduce WhoQA, a public benchmark dataset to examine model's behavior in knowledge conflict situations. We induce conflicts by asking about a common property among entities having the same name, resulting in questions with up to 8 distinctive answers. WhoQA evaluation set includes 5K questions across 13 Wikidata property types and 150K Wikipedia entities. Our experiments show that despite the simplicity of WhoQA questions, knowledge conflicts significantly degrades LLMs' performance in RAG settings.
Abstract:We present the first domain-adapted and fully-trained large language model, RecGPT-7B, and its instruction-following variant, RecGPT-7B-Instruct, for text-based recommendation. Experimental results on rating prediction and sequential recommendation tasks show that our model, RecGPT-7B-Instruct, outperforms previous strong baselines. We are releasing our RecGPT models as well as their pre-training and fine-tuning datasets to facilitate future research and downstream applications in text-based recommendation. Public "huggingface" links to our RecGPT models and datasets are available at: https://github.com/VinAIResearch/RecGPT
Abstract:Our work addresses the problem of unsupervised Aspect Category Detection using a small set of seed words. Recent works have focused on learning embedding spaces for seed words and sentences to establish similarities between sentences and aspects. However, aspect representations are limited by the quality of initial seed words, and model performances are compromised by noise. To mitigate this limitation, we propose a simple framework that automatically enhances the quality of initial seed words and selects high-quality sentences for training instead of using the entire dataset. Our main concepts are to add a number of seed words to the initial set and to treat the task of noise resolution as a task of augmenting data for a low-resource task. In addition, we jointly train Aspect Category Detection with Aspect Term Extraction and Aspect Term Polarity to further enhance performance. This approach facilitates shared representation learning, allowing Aspect Category Detection to benefit from the additional guidance offered by other tasks. Extensive experiments demonstrate that our framework surpasses strong baselines on standard datasets.