Abstract:Accurate taxi-demand prediction is essential for optimizing taxi operations and enhancing urban transportation services. However, using customers' data in these systems raises significant privacy and security concerns. Traditional federated learning addresses some privacy issues by enabling model training without direct data exchange but often struggles with accuracy due to varying data distributions across different regions or service providers. In this paper, we propose CC-Net: a novel approach using collaborative learning enhanced with contrastive learning for taxi-demand prediction. Our method ensures high performance by enabling multiple parties to collaboratively train a demand-prediction model through hierarchical federated learning. In this approach, similar parties are clustered together, and federated learning is applied within each cluster. The similarity is defined without data exchange, ensuring privacy and security. We evaluated our approach using real-world data from five taxi service providers in Japan over fourteen months. The results demonstrate that CC-Net maintains the privacy of customers' data while improving prediction accuracy by at least 2.2% compared to existing techniques.
Abstract:The growing demand for ride-hailing services has led to an increasing need for accurate taxi demand prediction. Existing systems are limited to specific regions, lacking generalizability to unseen areas. This paper presents a novel taxi demand forecasting system that leverages a graph neural network to capture spatial dependencies and patterns in urban environments. Additionally, the proposed system employs a region-neutral approach, enabling it to train a model that can be applied to any region, including unseen regions. To achieve this, the framework incorporates the power of Variational Autoencoder to disentangle the input features into region-specific and region-neutral components. The region-neutral features facilitate cross-region taxi demand predictions, allowing the model to generalize well across different urban areas. Experimental results demonstrate the effectiveness of the proposed system in accurately forecasting taxi demand, even in previously unobserved regions, thus showcasing its potential for optimizing taxi services and improving transportation efficiency on a broader scale.
Abstract:With the increasing number of IoT devices, there is a growing demand for energy-free sensors. Human activity recognition holds immense value in numerous daily healthcare applications. However, the majority of current sensing modalities consume energy, thus limiting their sustainable adoption. In this paper, we present a novel activity recognition system that not only operates without requiring energy for sensing but also harvests energy. Our proposed system utilizes photovoltaic cells, attached to the wrist and shoes, as eco-friendly sensing devices for activity recognition. By capturing photovoltaic readings and employing a deep transformer model with powerful learning capabilities, the system effectively recognizes user activities. To ensure robust performance across various subjects, time periods, and lighting conditions, the system incorporates feature extraction and different processing modules. The evaluation of the proposed system on realistic indoor and outdoor environments demonstrated its ability to recognize activities with an accuracy of 91.7%.
Abstract:Taxi-demand prediction is an important application of machine learning that enables taxi-providing facilities to optimize their operations and city planners to improve transportation infrastructure and services. However, the use of sensitive data in these systems raises concerns about privacy and security. In this paper, we propose the use of federated learning for taxi-demand prediction that allows multiple parties to train a machine learning model on their own data while keeping the data private and secure. This can enable organizations to build models on data they otherwise would not be able to access. Evaluation with real-world data collected from 16 taxi service providers in Japan over a period of six months showed that the proposed system can predict the demand level accurately within 1\% error compared to a single model trained with integrated data.
Abstract:The growing demand for intelligent environments unleashes an extraordinary cycle of privacy-aware applications that makes individuals' life more comfortable and safe. Examples of these applications include pedestrian tracking systems in large areas. Although the ubiquity of camera-based systems, they are not a preferable solution due to the vulnerability of leaking the privacy of pedestrians. In this paper, we introduce a novel privacy-preserving system for pedestrian tracking in smart environments using multiple distributed LiDARs of non-overlapping views. The system is designed to leverage LiDAR devices to track pedestrians in partially covered areas due to practical constraints, e.g., occlusion or cost. Therefore, the system uses the point cloud captured by different LiDARs to extract discriminative features that are used to train a metric learning model for pedestrian matching purposes. To boost the system's robustness, we leverage a probabilistic approach to model and adapt the dynamic mobility patterns of individuals and thus connect their sub-trajectories. We deployed the system in a large-scale testbed with 70 colorless LiDARs and conducted three different experiments. The evaluation result at the entrance hall confirms the system's ability to accurately track the pedestrians with a 0.98 F-measure even with zero-covered areas. This result highlights the promise of the proposed system as the next generation of privacy-preserving tracking means in smart environments.
Abstract:Thermal comfort in indoor environments has an enormous impact on the health, well-being, and performance of occupants. Given the focus on energy efficiency and Internet-of-Things enabled smart buildings, machine learning (ML) is being increasingly used for data-driven thermal comfort (TC) prediction. Generally, ML-based solutions are proposed for air-conditioned or HVAC ventilated buildings and the models are primarily designed for adults. On the other hand, naturally ventilated (NV) buildings are the norm in most countries. They are also ideal for energy conservation and long-term sustainability goals. However, the indoor environment of NV buildings lacks thermal regulation and varies significantly across spatial contexts. These factors make TC prediction extremely challenging. Thus, determining the impact of the building environment on the performance of TC models is important. Further, the generalization capability of TC prediction models across different NV indoor spaces needs to be studied. This work addresses these problems. Data is gathered through month-long field experiments conducted in 5 naturally ventilated school buildings, involving 512 primary school students. The impact of spatial variability on student comfort is demonstrated through variation in prediction accuracy (by as much as 71%). The influence of building environment on TC prediction is also demonstrated through variation in feature importance. Further, a comparative analysis of spatial variability in model performance is done for children (our dataset) and adults (ASHRAE-II database). Finally, the generalization capability of thermal comfort models in NV classrooms is assessed and major challenges are highlighted.
Abstract:Unlicensed LTE-WiFi coexistence networks are undergoing consistent densification to meet the rising mobile data demands. With the increase in coexistence network complexity, it is important to study network feature relationships (NFRs) and utilize them to optimize dense coexistence network performance. This work studies NFRs in unlicensed LTE-WiFi (LTE-U and LTE-LAA) networks through supervised learning of network data collected from real-world experiments. Different 802.11 standards and varying channel bandwidths are considered in the experiments and the learning model selection policy is precisely outlined. Thereafter, a comparative analysis of different LTE-WiFi network configurations is performed through learning model parameters such as R-sq, residual error, outliers, choice of predictor, etc. Further, a Network Feature Relationship based Optimization (NeFRO) framework is proposed. NeFRO improves upon the conventional optimization formulations by utilizing the feature-relationship equations learned from network data. It is demonstrated to be highly suitable for time-critical dense coexistence networks through two optimization objectives, viz., network capacity and signal strength. NeFRO is validated against four recent works on network optimization. NeFRO is successfully able to reduce optimization convergence time by as much as 24% while maintaining accuracy as high as 97.16%, on average.