Abstract:A lighting-based multispectral imaging system using an RGB camera and a projector is one of the most practical and low-cost systems to acquire multispectral observations for estimating the scene's spectral reflectance information. However, existing projector-based systems assume that the spectral power distribution (SPD) of each projector primary is known, which requires additional equipment such as a spectrometer to measure the SPD. In this paper, we present a method for jointly estimating the spectral reflectance and the SPD of each projector primary. In addition to adopting a common spectral reflectance basis model, we model the projector's SPD by a low-dimensional model using basis functions obtained by a newly collected projector's SPD database. Then, the spectral reflectances and the projector's SPDs are alternatively estimated based on the basis models. We experimentally show the performance of our joint estimation using a different number of projected illuminations and investigate the potential of the spectral reflectance estimation using a projector with unknown SPD.
Abstract:In this paper, we propose a novel projector-camera system for practical and low-cost acquisition of a dense object 3D model with the spectral reflectance property. In our system, we use a standard RGB camera and leverage an off-the-shelf projector as active illumination for both the 3D reconstruction and the spectral reflectance estimation. We first reconstruct the 3D points while estimating the poses of the camera and the projector, which are alternately moved around the object, by combining multi-view structured light and structure-from-motion (SfM) techniques. We then exploit the projector for multispectral imaging and estimate the spectral reflectance of each 3D point based on a novel spectral reflectance estimation model considering the geometric relationship between the reconstructed 3D points and the estimated projector positions. Experimental results on several real objects demonstrate that our system can precisely acquire a dense 3D model with the full spectral reflectance property using off-the-shelf devices.