Abstract:This paper proposes a novel learning-based framework for autonomous driving based on the concept of maximal safety probability. Efficient learning requires rewards that are informative of desirable/undesirable states, but such rewards are challenging to design manually due to the difficulty of differentiating better states among many safe states. On the other hand, learning policies that maximize safety probability does not require laborious reward shaping but is numerically challenging because the algorithms must optimize policies based on binary rewards sparse in time. Here, we show that physics-informed reinforcement learning can efficiently learn this form of maximally safe policy. Unlike existing drift control methods, our approach does not require a specific reference trajectory or complex reward shaping, and can learn safe behaviors only from sparse binary rewards. This is enabled by the use of the physics loss that plays an analogous role to reward shaping. The effectiveness of the proposed approach is demonstrated through lane keeping in a normal cornering scenario and safe drifting in a high-speed racing scenario.
Abstract:Accurate risk quantification and reachability analysis are crucial for safe control and learning, but sampling from rare events, risky states, or long-term trajectories can be prohibitively costly. Motivated by this, we study how to estimate the long-term safety probability of maximally safe actions without sufficient coverage of samples from risky states and long-term trajectories. The use of maximal safety probability in control and learning is expected to avoid conservative behaviors due to over-approximation of risk. Here, we first show that long-term safety probability, which is multiplicative in time, can be converted into additive costs and be solved using standard reinforcement learning methods. We then derive this probability as solutions of partial differential equations (PDEs) and propose Physics-Informed Reinforcement Learning (PIRL) algorithm. The proposed method can learn using sparse rewards because the physics constraints help propagate risk information through neighbors. This suggests that, for the purpose of extracting more information for efficient learning, physics constraints can serve as an alternative to reward shaping. The proposed method can also estimate long-term risk using short-term samples and deduce the risk of unsampled states. This feature is in stark contrast with the unconstrained deep RL that demands sufficient data coverage. These merits of the proposed method are demonstrated in numerical simulation.