Abstract:We present Tactician, a tactic learner and prover for the Coq Proof Assistant. Tactician helps users make tactical proof decisions while they retain control over the general proof strategy. To this end, Tactician learns from previously written tactic scripts and gives users either suggestions about the next tactic to be executed or altogether takes over the burden of proof synthesis. Tactician's goal is to provide users with a seamless, interactive, and intuitive experience together with robust and adaptive proof automation. In this paper, we give an overview of Tactician from the user's point of view, regarding both day-to-day usage and issues of package dependency management while learning in the large. Finally, we give a peek into Tactician's implementation as a Coq plugin and machine learning platform.
Abstract:We present a system that utilizes machine learning for tactic proof search in the Coq Proof Assistant. In a similar vein as the TacticToe project for HOL4, our system predicts appropriate tactics and finds proofs in the form of tactic scripts. To do this, it learns from previous tactic scripts and how they are applied to proof states. The performance of the system is evaluated on the Coq Standard Library. Currently, our predictor can identify the correct tactic to be applied to a proof state 23.4% of the time. Our proof searcher can fully automatically prove 39.3% of the lemmas. When combined with the CoqHammer system, the two systems together prove 56.7% of the library's lemmas.
Abstract:The goal of this project is to (i) accumulate annotated informal/formal mathematical corpora suitable for training semi-automated translation between informal and formal mathematics by statistical machine-translation methods, (ii) to develop such methods oriented at the formalization task, and in particular (iii) to combine such methods with learning-assisted automated reasoning that will serve as a strong semantic component. We describe these ideas, the initial set of corpora, and some initial experiments done over them.