Abstract:Deep learning has the potential to enhance speech signals and increase their intelligibility for users of hearing aids. Deep models suited for real-world application should feature a low computational complexity and low processing delay of only a few milliseconds. In this paper, we explore deep speech enhancement that matches these requirements and contrast monaural and binaural processing algorithms in two complex acoustic scenes. Both algorithms are evaluated with objective metrics and in experiments with hearing-impaired listeners performing a speech-in-noise test. Results are compared to two traditional enhancement strategies, i.e., adaptive differential microphone processing and binaural beamforming. While in diffuse noise, all algorithms perform similarly, the binaural deep learning approach performs best in the presence of spatial interferers. Through a post-analysis, this can be attributed to improvements at low SNRs and to precise spatial filtering.
Abstract:open Master Hearing Aid (openMHA) was developed and provided to the hearing aid research community as an open-source software platform with the aim to support sustainable and reproducible research towards improvement and new types of assistive hearing systems not limited by proprietary software. The software offers a flexible framework that allows the users to conduct hearing aid research using tools and a number of signal processing plugins provided with the software as well as the implementation of own methods. The openMHA software is independent of a specific hardware and supports Linux, MacOS and Windows operating systems as well as 32- bit and 64-bit ARM-based architectures such as used in small portable integrated systems. www.openmha.org