Abstract:Recent advances with self-supervised learning have allowed speech recognition systems to achieve state-of-the-art (SOTA) word error rates (WER) while requiring only a fraction of the labeled training data needed by its predecessors. Notwithstanding, while such models achieve SOTA performance in matched train/test conditions, their performance degrades substantially when tested in unseen conditions. To overcome this problem, strategies such as data augmentation and/or domain shift training have been explored. Available models, however, are still too large to be considered for edge speech applications on resource-constrained devices, thus model compression tools are needed. In this paper, we explore the effects that train/test mismatch conditions have on speech recognition accuracy based on compressed self-supervised speech models. In particular, we report on the effects that parameter quantization and model pruning have on speech recognition accuracy based on the so-called robust wav2vec 2.0 model under noisy, reverberant, and noise-plus-reverberation conditions.
Abstract:Unsupervised speech models are becoming ubiquitous in the speech and machine learning communities. Upstream models are responsible for learning meaningful representations from raw audio. Later, these representations serve as input to downstream models to solve a number of tasks, such as keyword spotting or emotion recognition. As edge speech applications start to emerge, it is important to gauge how robust these cross-task representations are on edge devices with limited resources and different noise levels. To this end, in this study we evaluate the robustness of four different versions of HuBERT, namely: base, large, and extra-large versions, as well as a recent version termed Robust-HuBERT. Tests are conducted under different additive and convolutive noise conditions for three downstream tasks: keyword spotting, intent classification, and emotion recognition. Our results show that while larger models can provide some important robustness to environmental factors, they may not be applicable to edge applications. Smaller models, on the other hand, showed substantial accuracy drops in noisy conditions, especially in the presence of room reverberation. These findings suggest that cross-task speech representations are not yet ready for edge applications and innovations are still needed.