Abstract:Digital phenotyping offers a novel and cost-efficient approach for managing depression and anxiety. Previous studies, often limited to small-to-medium or specific populations, may lack generalizability. We conducted a cross-sectional analysis of data from 10,129 participants recruited from a UK-based general population between June 2020 and August 2022. Participants shared wearable (Fitbit) data and self-reported questionnaires on depression (PHQ-8), anxiety (GAD-7), and mood via a study app. We first examined the correlations between PHQ-8/GAD-7 scores and wearable-derived features, demographics, health data, and mood assessments. Subsequently, unsupervised clustering was used to identify behavioural patterns associated with depression or anxiety. Finally, we employed separate XGBoost models to predict depression and anxiety and compared the results using different subsets of features. We observed significant associations between the severity of depression and anxiety with several factors, including mood, age, gender, BMI, sleep patterns, physical activity, and heart rate. Clustering analysis revealed that participants simultaneously exhibiting lower physical activity levels and higher heart rates reported more severe symptoms. Prediction models incorporating all types of variables achieved the best performance ($R^2$=0.41, MAE=3.42 for depression; $R^2$=0.31, MAE=3.50 for anxiety) compared to those using subsets of variables. This study identified potential indicators for depression and anxiety, highlighting the utility of digital phenotyping and machine learning technologies for rapid screening of mental disorders in general populations. These findings provide robust real-world insights for future healthcare applications.
Abstract:Language use has been shown to correlate with depression, but large-scale validation is needed. Traditional methods like clinic studies are expensive. So, natural language processing has been employed on social media to predict depression, but limitations remain-lack of validated labels, biased user samples, and no context. Our study identified 29 topics in 3919 smartphone-collected speech recordings from 265 participants using the Whisper tool and BERTopic model. Six topics with a median PHQ-8 greater than or equal to 10 were regarded as risk topics for depression: No Expectations, Sleep, Mental Therapy, Haircut, Studying, and Coursework. To elucidate the topic emergence and associations with depression, we compared behavioral (from wearables) and linguistic characteristics across identified topics. The correlation between topic shifts and changes in depression severity over time was also investigated, indicating the importance of longitudinally monitoring language use. We also tested the BERTopic model on a similar smaller dataset (356 speech recordings from 57 participants), obtaining some consistent results. In summary, our findings demonstrate specific speech topics may indicate depression severity. The presented data-driven workflow provides a practical approach to collecting and analyzing large-scale speech data from real-world settings for digital health research.
Abstract:Digital Biomarkers and remote patient monitoring can provide valuable and timely insights into how a patient is coping with their condition (disease progression, treatment response, etc.), complementing treatment in traditional healthcare settings.Smartphones with embedded and connected sensors have immense potential for improving healthcare through various apps and mHealth (mobile health) platforms. This capability could enable the development of reliable digital biomarkers from long-term longitudinal data collected remotely from patients. We built an open-source platform, RADAR-base, to support large-scale data collection in remote monitoring studies. RADAR-base is a modern remote data collection platform built around Confluent's Apache Kafka, to support scalability, extensibility, security, privacy and quality of data. It provides support for study design and set-up, active (eg PROMs) and passive (eg. phone sensors, wearable devices and IoT) remote data collection capabilities with feature generation (eg. behavioural, environmental and physiological markers). The backend enables secure data transmission, and scalable solutions for data storage, management and data access. The platform has successfully collected longitudinal data for various cohorts in a number of disease areas including Multiple Sclerosis, Depression, Epilepsy, ADHD, Alzheimer, Autism and Lung diseases. Digital biomarkers developed through collected data are providing useful insights into different diseases. RADAR-base provides a modern open-source, community-driven solution for remote monitoring, data collection, and digital phenotyping of physical and mental health diseases. Clinicians can use digital biomarkers to augment their decision making for the prevention, personalisation and early intervention of disease.