Abstract:Music style transfer, while offering exciting possibilities for personalized music generation, often requires extensive training or detailed textual descriptions. This paper introduces a novel training-free approach leveraging pre-trained Latent Diffusion Models (LDMs). By manipulating the self-attention features of the LDM, we effectively transfer the style of reference music onto content music without additional training. Our method achieves superior style transfer and melody preservation compared to existing methods. This work opens new creative avenues for personalized music generation.
Abstract:The utility of machine learning has rapidly expanded in the last two decades and presents an ethical challenge. Papernot et. al. developed a technique, known as Private Aggregation of Teacher Ensembles (PATE) to enable federated learning in which multiple teacher models are trained on disjoint datasets. This study is the first to apply PATE to an ensemble of quantum neural networks (QNN) to pave a new way of ensuring privacy in quantum machine learning (QML) models.